Skip to main content

Endothelium and Compound Transfer

  • Chapter
Book cover Molecular Nuclear Medicine

Abstract

One approach to the study of cell function in situ and to the quantitative phenotyping required for functional genomics and genetic circuit analysis is the bolus injection—outflow detection—multiple indicator dilution (MID) method. The MID method is a tracer dilution method used to measure tissue volumes (Goresky 1963; Goresky et al. 1970; Chinard 1975; Bassingthwaighte and Goresky 1984; Dawson et al. 1989, 1992), tissue composition (Dawson et al. 1989, 1992; Roerig et al. 1999), transcapillary transport parameters (Goresky et al. 1970; Bassingthwaighte 1974; Harris et al. 1978; Bassingthwaighte and Goresky 1984; Harris et al. 1987; Dawson et al. 1989; Audi et al. 1996 a, 2000; Linehan et al. 1998), enzyme or receptor binding (Maolli et al. 1985; Dawson et al. 1989; Linehan et al. 1998; Roerig et al. 2000), and enzyme kinetics (Goresky et al. 1983, 1993; Riggs et al. 1988; Dawson et al. 1989; Linehan et al. 1998; Audi et al. 2000) within an organ. The focus of this chapter will be on the application of the MID method to measurement of endothelial transport and metabolism, particularly in the lungs. In comparison to other organs, lung tissue is disproportionately comprised of endothelial cells, and the lungs contain a large fraction (nearly half) of the vascular endothelium of the entire body. Although endothelial functions can be organ-specific, the lung serves as a good model for demonstrating general principles involved in the application of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Audi SH, Krenz GS, Linehan JH et al (1994) Pulmonary capillary transport function from flow-limited indicators. J Appl Physiol 77:332–351

    PubMed  CAS  Google Scholar 

  • Audi SH, Linehan JH, Krenz GS et al (1995) Estimation of the pulmonary transport function in isolated rabbit lungs. J Appl Physiol 78:1004–1014

    Article  PubMed  CAS  Google Scholar 

  • Audi SH, Dawson CA, Linehan JH et al (1996 a) An interpretation of 14C-urea and 14C-primidone extraction in isolated rabbit lungs. Ann Biomed Eng 24:337–351

    Article  PubMed  CAS  Google Scholar 

  • Audi SH, Schuster DP, Merker MP et al (1996b) Pulmonary angiotensin converting enzyme ligand binding kinetics. FASEB J 10:A99

    Google Scholar 

  • Audi SH, Dawson CA, Linehan JH et al (1998 a) Pulmonary disposition of lipophilic amine compounds in the isolated perfused rabbit lung. J Appl Physiol 84:516–530

    PubMed  CAS  Google Scholar 

  • Audi SH, Linehan JH, Krenz GS et al (1998b) Accounting for the heterogeneity of capillary transit times in modeling multiple indicator dilution data. Ann Biomed Eng 26:914–930

    Article  PubMed  CAS  Google Scholar 

  • Audi SH, Linehan JH, Krenz GS et al (1998 c) Lipophilic amines as probes for measurement of lung capillary transport function and tissue composition using the multiple-indicator dilution method. In: Bassingthwaighte JB, Goresky CA, Linehan JH (eds) Whole organ approaches to cellular metabolism. Springer, Berlin Heidelberg New York, pp 517–543

    Chapter  Google Scholar 

  • Audi SH, Roerig DL, Ahlf SB et al (1999) Pulmonary inflammation alters the lung disposition of lipophilic amine indicators. J Appl Physiol 87:1831–1842

    PubMed  CAS  Google Scholar 

  • Audi SH, Olson LE, Bongard RD et al (2000) Toluidine blue O and methylene blue as endothelial redox probes in the intact lung. Am J Physiol Heart Circ Physiol 278:H137–H150

    PubMed  CAS  Google Scholar 

  • Audi SH, Dawson CA, Ahlf SB et al (2001) Oxygen dependency of monoamine oxidase activity in the intact lung. Am J Physiol (Lung Cell Mol Physiol) 281:L969–L981

    CAS  Google Scholar 

  • Bass L, Robinson PJ (1982) Capillary permeability of heterogeneous organs: a parsimonious interpretation of indicator diffusion data. Clin Exp Pharmacol Physiol 9:363–388

    Article  PubMed  CAS  Google Scholar 

  • Bassingthwaighte JB (1974) A concurrent flow model for extraction during transcapillary exchange. Circ Res 35:483–503

    Article  PubMed  CAS  Google Scholar 

  • Bassingthwaighte JB, Levin M (1981) Analysis of coronary outflow dilution curves for the estimation of cellular uptake rates in the presence of heterogeneous regional flows. Basic Res Cardiol 76:404–410

    Article  PubMed  CAS  Google Scholar 

  • Bassingthwaighte JB, Chaloupka M (1984) Sensitivity functions in the estimation of parameters of cellular exchange. Fed Proc 43:180–184

    Google Scholar 

  • Bassingthwaighte JB, Goresky CA (1984) Modeling in the analysis of solute and water exchange in the microvascu-lature. In: Renkin EM, Michel CC (eds) Handbook of physiology, vol IV, sect 2. The cardiovascular system. Microcirculation, part 1. American Physiological Society, Bethesda, MD, pp 549–626

    Google Scholar 

  • Bassingthwaighte JB, Ackerman FH, Wood EH (1966) Application of the lagged normal density curve as a model for arterial dilution curve. Circ Res 38:398–415

    Article  Google Scholar 

  • Bassingthwaighte JB, Malone MA, Moffett TC et al (1987) Validity of microsphere depositions for regional myocardial flows. Am J Physiol (Heart Circ Physiol 22) 253:H184–H193

    CAS  Google Scholar 

  • Bassingthwaighte JB, Kroll K, Schwartz LM et al (1998) Strategies for uncovering the kinetics of nucleoside transport and metabolism in capillary endothelial cells. In: Bassingthwaighte JB, Goresky CA, Linehan JH (eds) Whole organ approaches to cellular metabolism. Springer, Berlin Heidelberg New York, pp 163–188

    Chapter  Google Scholar 

  • Ben-Harari R, Bakhle YS (1980) Uptake of β-phenylethylamine in rat isolated lung. Biochem Pharmacol 29:489–494

    Article  PubMed  CAS  Google Scholar 

  • Bissonnette JM, Hohimer AR, Chao CR (1991) Unidirectional transport of glucose and lactate into brain of fetal sheep and guinea-pig. Exp Physiol 76:515–523

    PubMed  CAS  Google Scholar 

  • Boulton AA, Yu PH, Davis BA et al (1998) Aliphatic N-methylpropargylamines: monoamine oxidase-B inhibitors and antiapoptotic drugs. Adv Pharmacol 42:308–311

    Article  PubMed  CAS  Google Scholar 

  • Bronikowski TA, Dawson CA, Linehan JH (1987) On indicator dilution and perfusion heterogeneity: a stochastic model. Math Biosci 83:199–225

    Article  Google Scholar 

  • Chinard FP (1975) Estimation of extravascular lung water by indicator-dilution techniques. Circ Res 37:137–145

    Article  PubMed  CAS  Google Scholar 

  • Cousineau DF, Goresky CA, Rose CP et al (1995) Effects of flow, perfusion pressure, and oxygen consumption on cardiac capillary exchange. J Appl Physiol 78:1350–1359

    PubMed  CAS  Google Scholar 

  • Cowen ME, Mulvin D, Howard RB et al (1992) Lung tolerance to hyperthermia by in vivo perfusion. Eur J Cardio Thoracic Surg 6:167–173

    Article  CAS  Google Scholar 

  • Cowley AW Jr, Stoll M, Green AS et al (2000) Genetically defined risk of salt sensitivity in an intercross of brown Norway and Dahls rats. Physiol Genom 2:107–115

    CAS  Google Scholar 

  • Crosby AW (1997) The measure of reality. Cambridge University Press, London, p 229

    Google Scholar 

  • Dawson CA, Roerig DL, Linehan JH (1989) Evaluation of endothelial injury in the human lung. In: Jenkinson SG (ed) Clinics in chest medicine, vol 10. Saunders, Philadelphia, pp 13–23

    Google Scholar 

  • Dawson CA, Roerig DL, Rickaby DA et al (1992) Use of diazepam for interpreting changes in extravascular lung water. J Appl Physiol 72:686–693

    PubMed  CAS  Google Scholar 

  • Demarino S, Olson LE, Pou NA et al (1998) Optical and radioisotope indicator dilution measurements in pulmonary edema. Ann Biomed Eng 26:417–430

    Article  PubMed  CAS  Google Scholar 

  • Dupuis J, Goresky C, Stewart DJ (1994) Pulmonary removal and production of endothelin in the anesthetized dog. J Appl Physiol 76:694–700

    PubMed  CAS  Google Scholar 

  • Finlayson BA (1992) Numerical methods for problems with moving fronts. Ravena Park Publishing, Seattle

    Google Scholar 

  • Gardaz JP, Py P, Suter PM et al (1988) Effects of oleic acid-,alpha-naphthylthiourea-, and phorbol myristate acetateinduced microvascular damage on indexes of pulmonary endothelial function in anesthetized dogs. Am Rev Respir Dis 137:1350–1355

    PubMed  CAS  Google Scholar 

  • Gillis CN (1988) Pulmonary extraction of PGE1 in the adult respiratory distress syndrome. Am Rev Respir Dis 137:1–2

    Article  PubMed  CAS  Google Scholar 

  • Gillis CN, Pitt BR (1982) The fate of circulating amines within the pulmonary circulation. Annu Rev Physiol 44:269–281

    Article  PubMed  CAS  Google Scholar 

  • Gillis CN, Pitt BR, Wiedemann HP et al (1986) Depressed prostaglandin El and 5-hydroxytryptamine removal in patients with adult respiratory distress syndrome. Am Rev Respir Dis 134:739–744

    PubMed  CAS  Google Scholar 

  • Goncharova VA (1983) Content of serotonin, catecholamines and monoamine oxidase activity of the lung in disease. Vopr Med Khim 29:34–39

    PubMed  CAS  Google Scholar 

  • Gonzalez-Fernandez JM, Atta SE (1973) Maximal substrate transport in capillary networks. Microvasc Res 5:180–198

    Article  PubMed  CAS  Google Scholar 

  • Goresky CA (1963) A linear method for determining liver sinusoidal and extravascular volumes. Am J Physiol 204:626–640

    PubMed  CAS  Google Scholar 

  • Goresky CA, Rose CP (1977) Blood-tissue exchange in liver and heart: the influence of capillary transit times. Fed Proc 36:2629–2634

    PubMed  CAS  Google Scholar 

  • Goresky CA, Cronin RFP, Wangel BE (1969) Indicator dilution measurements of extravascular water in the lungs. J Clin Invest 48:487–501

    Article  PubMed  CAS  Google Scholar 

  • Goresky CA, Ziegler WH, Bach GG (1970) Capillary exchange modeling. Circ Res 27:739–764

    Article  PubMed  CAS  Google Scholar 

  • Goresky CA, Bach GG, Nadeau BE (1975) Red cell carriage of label. Its limiting effect on the exchange of materials in the liver. Circ Res 36:328–351

    Article  PubMed  CAS  Google Scholar 

  • Goresky CA, Bach GG, Rose CP (1983) Effects of saturating metabolic uptake on space profiles and tracer kinetics. Am J Physiol 244(Gastrointest Liver Physiol 7):G215–G232

    PubMed  CAS  Google Scholar 

  • Goresky CA, Bach GG, Schwab AJ (1993) Distributed-in-space product formation in vivo: enzymic kinetics. Am J Physiol 264(Heart Circ Physiol 33):H2029–H2050

    PubMed  CAS  Google Scholar 

  • Goresky CA, Bach GG, Schwab AJ et al (1998) Liver cell entry in vivo and enzymic conversion. In: Bassingthwaighte JB, Goresky CA, Linehan JH (eds) Whole organ approaches to cellular metabolism. Springer, Berlin Heidelberg New York, pp 297–324

    Chapter  Google Scholar 

  • Harris TR, Newman EV (1970) An analysis of mathematical models of circulatory indicator-dilution curves. J Appl Physiol 28:840–850

    PubMed  CAS  Google Scholar 

  • Harris TR, Brigham KC, Rowlett RD (1978) Pressure, serotonin, and histamine effects on lung multiple-indicator curves in sheep. J Appl Physiol 44:245–253

    PubMed  CAS  Google Scholar 

  • Harris TR, Roselli RJ, Mauner CR et al (1987) Comparison of labeled propranediol and urea as markers of lung vascular injury. J Appl Physiol 62:1852–1859

    PubMed  CAS  Google Scholar 

  • Hauptmann N, Grimsby J, Shih JC et al (1996) The metabolism of tyramine by monoamine oxidase A/B causes oxidative damage to mitochondrial DNA. Arch Biochem Biophys 335:295–304

    Article  PubMed  CAS  Google Scholar 

  • Haworth ST, Linehan JH, Bronikowski TA et al (1991) A hemodynamic model representation of the dog lung. J Appl Physiol 70:15–26

    PubMed  CAS  Google Scholar 

  • Ishiwata K, Ido T, Yanai K et al (1985) Biodistribution of a positron-emitting suicide inactivator of monoamine oxidase, carbon-11 pargyline, in mice and a rabbit. J Nucl Med 26:630–636

    PubMed  CAS  Google Scholar 

  • Johnston MR, Christensen CW, Minchin RF et al (1985) Isolated total lung perfusion as a means to deliver organ-specific chemotherapy: long-term studies in animals. Surgery 98:35–44

    PubMed  CAS  Google Scholar 

  • Kassissia IG, Goresky CA, Rose CP et al (1995) Tracer oxygen distribution is barrier-limited in the cerebral micro-circulation. Circ Res 7:1201–1211

    Article  Google Scholar 

  • King RB, Bassingthwaighte JB, Hales JRS et al (1985) Stability of heterogeneity of myocardial blood flow in normal awake baboons. Circ Res 57:285–295

    Article  PubMed  CAS  Google Scholar 

  • King RB, Raymond GM, Bassingthwaighte JB (1996) Modeling blood flow heterogeneity. Ann Biomed Eng 24:352–372

    Article  PubMed  CAS  Google Scholar 

  • Kuikka J, Levin M, Bassingthwaighte JB (1986) Multiple tracer dilution estimates of D-and 2-deoxy-D-glucose uptake by the heart. Am J Physiol 250(Heart Circ Physiol 19):H29–H42

    PubMed  CAS  Google Scholar 

  • Lassen NA, Perl W (1979) Tracer kinetic methods in medical physiology. Raven, New York, pp 156–175

    Google Scholar 

  • Linehan JH, Bronikowski TA, Dawson CA (1987) Kinetics of uptake and metabolism by endothelial cell from indicator dilution. Ann Biomed Eng 15:201–215

    Article  PubMed  CAS  Google Scholar 

  • Linehan JH, Audi SH, Dawson CA (1998) The uptake and metabolism of substrates by endothelium in the lung. In: Bassingthwaighte JB, Goresky CA, Linehan JH (eds) Whole organ approaches to cellular metabolism. Springer, Berlin Heidelberg New York, pp 427–438

    Chapter  Google Scholar 

  • Maolli R, Howell RE, Gillis CN (1985) Kinetics of captopriland enalapril-induced inhibition of pulmonary angiotensin converting enzyme in vivo. J Pharmacol Exp Ther 234:372–377

    Google Scholar 

  • Malorni W, Giammarioli AM, Matarrese P et al (1998) Protection against apoptosis by monoamine oxidase A inhibitors. FEBS Lett 426:155–159

    Article  PubMed  CAS  Google Scholar 

  • Merker MP, Gillis CN (1988) Propranolol and serotonin removal in lung injury. J Appl Physiol 65:2579–2584

    PubMed  CAS  Google Scholar 

  • Morel DR, Dargent F, Bachmann M et al (1985) Pulmonary extraction of serotonin and propranolol in patients with adult respiratory distress syndrome. Am Rev Respir Dis 132:479–484

    PubMed  CAS  Google Scholar 

  • Pang KS, Barker F, Simard A et al (1995) Sulfation of acetaminophen by the perfused rat liver: the effect of red blood cell carriage. Hepatology 22:267–282

    Article  PubMed  CAS  Google Scholar 

  • Pang KS, Goresky CA, Schwab AJ et al (1998) Probing the structure and function of the liver with the multiple-indicator dilution technique. In: Bassingthwaighte JB, Goresky CA, Linehan JH (eds) Whole organ approaches to cellular metabolism. Springer, Berlin Heidelberg New York, pp 325–368

    Chapter  Google Scholar 

  • Paterson IA, Tatton WG (1998) Antiapoptotic actions of monoamine oxidase B inhibitors. Adv Pharmacol 42:312–315

    Article  PubMed  CAS  Google Scholar 

  • Paulson OB, Gyory A, Hertz MM (1982) Blood-brain barrier transfer and cerebral uptake of antiepileptic drugs. Clin Pharmacol Ther 32:466–477

    Article  PubMed  CAS  Google Scholar 

  • Riggs D, Havill AM, Pitt BR et al (1988) Pulmonary angio-tensin-converting enzyme kinetics after acute lung injury in the rabbit. J Appl Physiol 64:2508–2516

    PubMed  CAS  Google Scholar 

  • Roerig DL, Ahlf SB, Dawson CA et al (1995) First pass uptake in the lung of drugs used during anesthesia. In: Bosnjak AJ, Kampine JP (eds) Advances in pharmacology. Anesthesia in cardiovascular disease, vol 31. Plenum, New York, pp 531–549

    Google Scholar 

  • Roerig DL, Audi SH, Linehan JH et al (1999) Detection of changes in lung tissue properties with multiple-indicator dilution. J Appl Physiol 86:1866–1880

    PubMed  CAS  Google Scholar 

  • Roerig DL, Audi SH, Ahlf SB et al (2000) Increases in mitochondrial benzodiazepine receptors and caspase-3 activity in inflamed lungs. FASEB J 14:A195

    Google Scholar 

  • Roth JA, Gillis CN (1975) Multiple forms of amine oxidase in perfused rabbit lung. J Pharmacol Exp Ther 194:537–544

    PubMed  CAS  Google Scholar 

  • Schwab AJ, Goresky CA (1996) Hepatic uptake of protein-bound ligands: effect of an unstirred Disse space. Am J Physiol 270(Gastintest Liver Physiol 33):G869–G880

    PubMed  CAS  Google Scholar 

  • Schwab AJ (1998) A generalized mathematical theory of the multiple-indicator dilution method. In: Bassingthwaighte JB, Goresky CA, Linehan JH (eds) Whole organ approaches to cellular metabolism. Springer, Berlin Heidelberg New York, pp 369–388

    Chapter  Google Scholar 

  • Schwartz LM, Bukowski TR, Ploger JD et al (2000) Endothelial adenosine transporter characterization in perfused guinea pig hearts. Am J Physiol Heart Circ Physiol 279:1502–1511

    Google Scholar 

  • Vane JR (1969) The release and fate of vasoactive hormones in the circulation. Pharmacologist 35:209–242

    CAS  Google Scholar 

  • Wiedemann HP, Matthay MA, Gillis CN (1990) Pulmonary endothelial cell injury and altered lung metabolic function. Clin Chest Med 11:723–736

    PubMed  CAS  Google Scholar 

  • Yipintsoi T, Dobbs Jr WA, Sanlon PD et al (1973) Regional distribution of diffusible tracers and carbonized microspheres in the left ventricle of isolated dog hearts. Circ Res 33:573–587

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Piantadosi CA (1991) Prevention of H2O2 generation by monoamine oxidase protects against CNS O2 toxicity. J Appl Physiol 71:1057–1061

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dawson, C.A., Audi, S.H., Krenz, G.S., Roerig, D.L. (2003). Endothelium and Compound Transfer. In: Feinendegen, L.E., Shreeve, W.W., Eckelman, W.C., Bahk, YW., Wagner, H.N. (eds) Molecular Nuclear Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55539-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55539-8_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62427-8

  • Online ISBN: 978-3-642-55539-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics