Skip to main content

Instrumentation for Measuring Metabolism

  • Chapter
Molecular Nuclear Medicine

Abstract

The use of a radioactive label to facilitate the measurement of the in vivo distribution of a pharmaceutical has long been recognised as a powerful analytical technique. The first biological application of a tracer was reported in 1923 by Hevesy (1923), who employed a radioisotope of lead to investigate the metabolism of that element in plants. He showed how it was possible to measure quantitatively the uptake and distribution of the lead in different parts of the plant. Since the detection process is more than a million times more sensitive than chemical and physical methods, only minute quantities of lead were needed and so toxic effects could be avoided. Of course, the application was limited as lead is not a normal constituent of biological systems. One of the earliest studies on man was reported by Blumgart and Yens (1927), who measured the arm-to-arm circulation time using a 100 MBq of radium-C. The beta emissions were detected by a Wilson cloud chamber.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Accorsi R, Gasparini F, Lanza RC (2001a) Optimal coded aperture patterns for improved SNR in nuclear medicine imaging. Nucl Instr Methods Phys Res A 474:273–284

    Article  CAS  Google Scholar 

  • Accorsi R, Gasparini F, Lanza RC (2001b) A coded-aperture for high-resolution nuclear medicine planar imaging with a conventional Anger camera: experimental results. IEEE Trans Nucl Sci 48:2411–2417

    Article  Google Scholar 

  • Anger HO (1958) Scintillation camera. Rev Sci Instr 29:27–33

    Article  CAS  Google Scholar 

  • Anger HO (1964) Scintillation camera with multichannel collimators. J Nucl Med 5:515–531

    PubMed  CAS  Google Scholar 

  • Bailey DL, Meikle SR (1994) A convolution-subtraction scatter correction method for 3D PET. Phys Med Biol 39:411–424

    Article  PubMed  CAS  Google Scholar 

  • Bailey DL, Gilardi M-C, Grootoonk S, Kinahan PE, Nahmias C, Ollinger J, Townsend DW, Trebossen R, Zito M (1998) Quantitative procedures in 3D PET. In: Bendriem B, Townsend D (eds) The theory and practice of 3D PET. Kluwer, Dordrecht, pp 55–109

    Google Scholar 

  • Barber HH, Apotovsky BA, Augustine FL, Barrett HH, Dereniak EL, Doty FP, Eskin JD, Hamilton WJ, Marks DG, Matherson KJ, Venzon JE, Woolfenden JM, Young ET (1997) Semiconductor pixel detectors for gamma ray imaging in nuclear medicine. Nucl Instr Methods Phys Res A 395:421–428

    Article  CAS  Google Scholar 

  • Barrett HH (1972) J Fresnel zone plate imaging in nuclear medicine. J Nucl Med 13:382–385

    PubMed  CAS  Google Scholar 

  • Barrett HH, De Meester GD (1974) Quantum noise in Fresnel zone plate imaging. Appl Opt 13:1100–1109

    Article  PubMed  CAS  Google Scholar 

  • Barrett HH, Swindell W (1981) Radiological imaging. The theory of image formation, detection and processing, vol 1. Academic, New York, pp 262–268

    Google Scholar 

  • Barrett HH, De Meester GD, Wilson DT, Farmelant MH (1972) Recent advances in Fresnel zone plate imaging. In: Medical radioisotope scintigraphy, vol 1. IAEA, Vienna, pp 269–281

    Google Scholar 

  • Bendriem B, Townsend D (1998) The theory and practice of 3D PET. Kluwer, Dordrecht

    Google Scholar 

  • Blake GM, Park-Holohan SJ, Cook GJR, Fogelman I (2001) Quantitative studies of bone with the use of F-18 fluoride and Tc-99m-methylene diphosphonate. Semin Nucl Med 31:28–49

    Article  PubMed  CAS  Google Scholar 

  • Blumgart HL, Yens OC (1927) Studies on the velocity of blood flow. 1. The method utilised. J Clin Invest 4:1–13

    Article  PubMed  CAS  Google Scholar 

  • Bouwens L, Van de Walle R, Nuyts J, Koole M, D’Asseler Y, Vandenberghe S, Lemahieu I, Dierckx RA (2001) Image-correction techniques in SPECT. Comp Med Imag Graphics 25:117–126

    Article  CAS  Google Scholar 

  • Bracewell RN (1956) Strip integration in radio-astronomy. Ast J Phys 9:198–217

    Article  Google Scholar 

  • Bracewell RN, Riddle AC (1967) Inversion of fan-beam scans in radio-astronomy. Astrophys J 150:427–434

    Article  Google Scholar 

  • Casey ME, Nutt RA (1986) A multicrystal 2-dimensional BGO detector system for positron emission tomography. IEEE Trans Nucl Sci 33:460–463

    Article  Google Scholar 

  • Cassen B, Curtis L, Reed C, Libby R (1951) Instrumentation for I131 use in medical studies. Nucleonics 9:46–50

    Google Scholar 

  • Chang LT (1978) A method for attenuation correction in radionuclide computed tomography. IEEE Trans Nucl Sci NS 25:638–643

    Article  Google Scholar 

  • Chang LT, Kaplan SN, Macdonald B, Perez-Mendez V, Shiraishi L (1974) A method of tomographic imaging using a multiple pinhole coded aperture. J Nucl Med 15:1063–1065

    PubMed  CAS  Google Scholar 

  • Chepel V, Lopes MI, Kuchenkov A, Marques RF, Policarpo AJPL (1997) Performance study of a liquid xenon chamber for PET. Nucl Instr Methods Phys Res A 392:427–432

    Article  CAS  Google Scholar 

  • Cherry SR, Meikle SR, Hoffman EJ (1993) Correction and characterisation of scattered events in three-dimensional PET using scanners with retractable septa. J Nucl Med 34:671–678

    PubMed  CAS  Google Scholar 

  • Crippin DDM (1976) Single sideband methods in Fresnel zone plate imaging. In: Raynaud C, Todd-Pokropek A (eds) Information processing in scintigraphy. Service de Documentation du CEN Saclay, no 76-003, pp 446–454

    Google Scholar 

  • De Rosier DJ, Klug A (1968) Reconstruction of three-dimensional structures from electron micrographs. Nature 217:130–134

    Article  Google Scholar 

  • Défrise M, Kinahan PE, Townsend DW, Michel C, Sibomana M, Newport D (1997) Exact and approximate rebinning algorithms for 3D PET data. IEEE Trans Med Imag 16:145–158

    Article  Google Scholar 

  • Dekemp RA, Nahmias C (1994) Attenuation correction in PET using single-photon transmission measurement. Med Phys 21:771–778

    Article  PubMed  CAS  Google Scholar 

  • Detko J (1969) Semiconductor diode matrix for isotope localization. Phys Med Biol 14:245–253

    Article  PubMed  CAS  Google Scholar 

  • DeVito RP, Hamill JJ, Treffert JD, Stoub EW (1989) Energy weighted acquisition of scintigraphic images using finite spatial filters. J Nucl Med 30:2029–2035

    PubMed  CAS  Google Scholar 

  • Eisen Y, Shor A (1998) CdTe and CdZnTe materials for room temperature X-ray and gamma-ray detectors. J Crystal Growth 184/185:1302–1312

    Google Scholar 

  • Eisen Y, Shor A, Gilath C, Tsarbarim M, Chouraqui P, Hellman C, Lubin E (1996) A gamma camera based on CdTe detectors. Nucl Instr Methods Phys Res A 380:474–478

    Article  CAS  Google Scholar 

  • Fougeres P, Siffert P, Hageali M, Koebal J, Regal R (1999) CdTe and Cd1-xZnxTe for nuclear detectors: facts and ficions. ucl Instr Methods Phys Res A 428:38–44

    Article  CAS  Google Scholar 

  • Genna S, Pang S-C, Smith A (1981) Digital scintigraphy: principles, design and performance. J Nucl Med 22:365–371

    PubMed  CAS  Google Scholar 

  • Gindi GR, Arendt J, Barrett HH, Chiu MY, Ervin A, Giles CL, Kujoory MA, Miller EL, Simpsons RG (1982) Imaging with rotating slit apertures and rotating collimators. Med Phys 9:324–339

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez DE, Jaszczak RJ, Bowsher JE, Akabani G, Gréer KL (2001) High resolution absolute SPECT quantitation for 1-131 distributions used in the treatment of lymphoma: a phantom study. IEEE Trans Nucl Sci 48:707–714

    Article  Google Scholar 

  • Graham LG, Neil R (1974) In vivo quantitation of radioactivity using the Anger camera. Radiol 112:441–442

    CAS  Google Scholar 

  • Grootoonk S, Spinks TJ, Sashin D, Spyrou NM, Jones T (1996) Correction for scatter in 3D brain PET using a dual energy window method. Phys Med Biol 41:2757–2774

    Article  PubMed  CAS  Google Scholar 

  • Hendel RC, Corbett JR, Cullom S, DePuey G, Garcia EV, Bateman T (2002) The value and practice of attenuation correction for myocardial perfusion SPECT imaging: a joint position statement from the American Society of Nuclear cardiology and the Society of Nuclear Medicine. J Nucl Med 43:273–280

    Google Scholar 

  • Herbert T, Leahy R, Singh M (1987) Maximum likelihood reconstruction for a prototype electronically collimated single photon emission system. SPIE 767:77–83

    Google Scholar 

  • Hevesy G (1923) The absorption and translocation of lead by plants. Biochem J 17:439

    PubMed  CAS  Google Scholar 

  • Hiramoto T, Tanaka E, Nohara N (1971) A scintillation camera based on delay-line time conversion. J Nucl Med 12:160–165

    PubMed  CAS  Google Scholar 

  • Hoffman EJ, Huang SC, Phelps ME, Kuhl DE (1981) Quantitation in positron emission computed-tomography. 4. Effect of accidental coincidences. J Comput Assist Tomogr 5:391–400

    Article  PubMed  CAS  Google Scholar 

  • Huang S-C, Hoffman EJ, Phelps ME, Kuhl DE (1979) Quantitation in positron emission computed tomography. 2. Effects of inaccurate attenuation correction. J Comput Assist Tomogr 3:804–812

    PubMed  CAS  Google Scholar 

  • Huesman RH, Derenzo SE, Cahoon JL, Geyer AB, Moses WW, Uber DC, Vuletich T, Budinger TF (1988) Orbiting transmission source for positron tomography. IEEE Trans Nucl Sci 35:735–739

    Article  CAS  Google Scholar 

  • Hudson HM, Larkin RS (1994) Accelerated image-reconstruction using ordered subsets of projection data. IEEE Trans Med Imag 13:601–609

    Article  CAS  Google Scholar 

  • Jaszczak RJ, Floyd CE, Manglos SH, Greer KL, Coleman RE (1986) Cone beam collimation for single photon emission computed tomography: analysis simulation and image reconstruction using filtered backprojection. Med Phys 13:484–489

    Article  PubMed  CAS  Google Scholar 

  • Kalki K, Blankenspoor SC, Brown JK, Hasegawa BH, Dae MW, Chin M, Stilson C (1997) Myocardial perfusion imaging with a combined X-ray CT and SPECT system. J Nucl Med 38:1535–1540

    PubMed  CAS  Google Scholar 

  • Kaufman L, Lorenz V, Hosier K, Hoenninger J, Hattner RS, Okerlund M, Price DC, Shames DM, Swann SJ, Ewins JH, Armantrout GA, Camp DC, Lee K (1978) Two detector, 512 element high purity germanium camera prototype. IEEE Trans Nucl Sci NS-25:189–195

    Article  Google Scholar 

  • Keyes WI (1975) The fan-beam gamma camera. Phys Med Biol 20:489–493

    Article  PubMed  CAS  Google Scholar 

  • Kim JH, Choi Y, Joo KS, Sihn BS, Chong JW, Kim SE, Lee KH, Choe YS, Kim BT (2000) Development of a miniature scintillation camera using Nal(Tl) scintillator and PSPMT for scintimammography. Phys Med Biol 45:3481–3488

    Article  PubMed  CAS  Google Scholar 

  • Kinahan PE, Rogers JG (1989) Analytic 3D image reconstruction using all detected events. IEEE Trans Nucl Sci 36:964–968

    Article  CAS  Google Scholar 

  • King MA, Hademenos GJ, Glick SJ (1992) A dual photopeak window method for scatter correction. J Nucl Med 33:605–612

    PubMed  CAS  Google Scholar 

  • Koral KF, Rogers WL, Knoll GF (1975) Digital tomographic imaging with time-modulated pseudorandom coded aperture and Anger camera. J Nucl Med 16:402–431

    PubMed  CAS  Google Scholar 

  • Kulberg GH, Muehllehner G, van Dijk N (1972) Improved resolution of the Anger scintillation camera through the use of threshold preamplifiers. J Nucl Med 13:169–171

    PubMed  CAS  Google Scholar 

  • La Fontaine R, Stein MA, Graham LS, Winter J (1986) Cold lesions: enhanced contrast using asymmetric photopeak windows. Radiology 160:255–260

    PubMed  Google Scholar 

  • Lange K, Carson R (1984) EM reconstruction algorithms for emission and transmission tomography. J Comput Assist Tomogr 8:306–316

    PubMed  CAS  Google Scholar 

  • LeBlanc JW, Clinthorne NH, Hua C, Rogers WL, Wehe DK, Wilderman SJ (1999) A Compton camera for nuclear medicine applications using 113mIn. Nucl Instr Methods Phys Res A 422:735–739

    Article  CAS  Google Scholar 

  • Lewellen TK, Bice AN, Pollard KR, Zhu J-B, Plunkett ME (1989) Evaluation of a clinical scintillation camera with pulse tail extrapolation electronics. J Nucl Med 30:1554–1558

    PubMed  CAS  Google Scholar 

  • Lewellen TK, Miyoaka RS, Swan WL (1999) PET imaging using dual-headed gamma cameras: an update. Nucl Med Commun 20:5–12

    Article  PubMed  CAS  Google Scholar 

  • Lodge MA, Binie DM, Flower MA, Webb S (1995) The experimental evaluation of a prototype slat collimator for single photon emission computed tomography. Phys Med Biol 40:427–448

    Article  PubMed  CAS  Google Scholar 

  • Macovski A (1974) Gamma ray imaging using modulated apertures. Phys Med Biol 19:523–533

    Article  PubMed  CAS  Google Scholar 

  • Matherson K, Barber H, Barrett H, Eskin J, Dereniak E, Marks D, Woolfenden J, Young E (1998) Progress in the development of large area modular 64x64 CdZnTe imaging arrays for nuclear medicine. IEEE Trans Nucl Sci 45:354–358

    Article  CAS  Google Scholar 

  • Melcher CL (2000) Scintillation crystals for PET. J Nucl Med 46:1051–1055

    Google Scholar 

  • Mestais C, Baffert N, Bonnefoy J, Chapuis A, Koenig A, Monnet O, Buffet PO, Rostaing JP, Sauvage F, Verger L (2001) A new design for a high resolution, high efficiency CZT gamma detector. Nucl Instr Methods Phys Res A 458:62–67

    Article  CAS  Google Scholar 

  • Michel C, Bol A, Spinks T, Townsend D, Bailey D, Grootoonk S, Jones T (1991) Assessment of response function in 2 PET scanners with and without interplane septa. IEEE Trans Med Im 10:240–248

    Article  CAS  Google Scholar 

  • Mitchell JS (1946) Applications of recent advances in nuclear physics to medicine. Br J Radiol 19:481–487

    Article  PubMed  CAS  Google Scholar 

  • Moyer RA (1974) A low energy multi-hole converging collimator compared with a pinhole collimator. J Nucl Med 15:59–64

    PubMed  CAS  Google Scholar 

  • Muehllehner G (1969) A diverging collimator for gamma ray imaging cameras. J Nucl Med 10:197–201

    PubMed  CAS  Google Scholar 

  • Muehllehner G, Dudek J, Moyer R (1976) Influence of hole shape on collimator performance. Phys Med Biol 21:242–250

    Article  PubMed  CAS  Google Scholar 

  • Muehllehner G, Colsher JG, Stoub EW (1980) Correction for field nonuniformity in scintillation cameras through removal of spatial distortion. J Nucl Med 21:771–776

    PubMed  CAS  Google Scholar 

  • Narita H, Kawaida Y, Ooshita I, Itoh, T, Tsuchida D, Fukumitsu N, Mori Y, Makimo M (2001) Evaluation of efficiency of a multi-crystal scintillation camera Digirad 2020tc Imager using solid state detectors. Jpn J Nucl Med 38:355–362

    CAS  Google Scholar 

  • Ogawa K, Harata Y, Ichihara T, Kubo A, Hashinoto S (1991) A practical method for position dependent Compton-scattered correction in single photon emission CT. IEEE Trans Med Imag 10:408–412

    Article  CAS  Google Scholar 

  • Ollinger JM (1996) Model-based scatter for fully 3D PET. Phys Med Biol 41:153–176

    Article  PubMed  CAS  Google Scholar 

  • Ott RJ (1997) Position sensitive detectors for medical imaging. Nucl Instr Methods Phys Res A 392:396–401

    Article  CAS  Google Scholar 

  • Pani R, Pellegrini R, Scopinaro F, Soluri A, De Vincentis G, Pergola A, Iacopi F, Corona A, Filippi S, Ballesio PL (1997) Scintillating array gamma camera for clinical use. Nucl Instr Methods Phys Res A 392:295–298

    Article  CAS  Google Scholar 

  • Pani R, Pellegrini R, Soluri A, De Vincentis G, Scafe R, Pergola A (1998) Single photon emission imaging by position sensitive PMT. Nucl Instr Methods Phys Res A 409:524–528

    Article  CAS  Google Scholar 

  • Peters AM, Myers MJ (1998) Physiological measurements with radionuclides in clinical practice. Oxford University Press, Oxford

    Google Scholar 

  • Pretorius PH, van Rensburg AJ, van Aswegen A, Lotter MO, Serfontein DE, Herbst CP (1993) The channel ratio method for scatter correction for radionuclide image quantitation. J Nucl Med 34:330–335

    PubMed  CAS  Google Scholar 

  • Radon J (1917) Über die Bestimmung von Functionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten. (On the determination of functions from their integrals along certain manifolds.) Ber Vrbhandl Sachs Akad Wiss Leipzig, Math-Phys KL 69:262–277

    Google Scholar 

  • Rosenthal MS, Cullom J, Hawkins W, Moore SC, Tsui BMW, Yester M (1995) Quantitative SPECT imaging: a review and recommendations by the focus committee of the Society of Nuclear Medicine Computer and Instrumentation Council. J Nucl Med 36:1489–1513

    PubMed  CAS  Google Scholar 

  • Scheiber C, Giakos GC (2001) Medical applications of CdTe and CdZnTe detectors. Nucl Instr Methods Phys Res A 458:12–25

    Article  CAS  Google Scholar 

  • Scheiber C, Eclancher B, Chambron J, Prat V, Kazandjan A, Jahnke A, Matz R, Thomas A, Warren S, Hage-Hali M, Regal R, Siffert P, Karman M (1999) Heart imaging by cadmium telluride gamma camera. European Program “BIOMED” consortium. Nucl Instr Methods Phys Res A 428:139–149

    Article  Google Scholar 

  • Sharp PF, Dendy PP, Keyes WI (1985) Radionuclide imaging techniques. Academic, London, pp 55–59

    Google Scholar 

  • Shepp LA, Vardi Y (1982) Maximum likelihood reconstruction for emission tomography. IEEE Trans Med Imag 1:113–122

    Article  CAS  Google Scholar 

  • Shor A, Eisen Y, Mardor I (1999) Optimum spectroscope performance from CZTγ and X-ray detectors with pad and strip detectors. Nucl Instr Methods Phys Res A 428:182

    Article  CAS  Google Scholar 

  • Singh M, Doria D (1983) An electronically collimated gamma camera for single photon emission computed tomography, part II. Image reconstruction and preliminary experimental measurements. Med Phys 10:428–435

    Article  PubMed  CAS  Google Scholar 

  • Singh M, Brechner RR (1990) Experimental test-object study of electronically collimated SPECT. J Nucl Med 31:178–186

    PubMed  CAS  Google Scholar 

  • Tamaki N, Kuge Y, Tsukamoto E (2001) The road to quantitation of regional myocardial uptake of tracer. J Nucl Med 42:780–781

    PubMed  CAS  Google Scholar 

  • Tanaka E, Hiramoto T, Nohara N (1970) Scintillation cameras based on new pulse arithmetic. J Nucl Med 11:542–547

    PubMed  CAS  Google Scholar 

  • Todd PW, Nightingale JM, Everett DB (1974) A proposed gamma camera. Nature 251:132–134

    Article  CAS  Google Scholar 

  • Vandenberghe S, D’Asseler Y, Koole M, Van de Walle R, Lemahieu I, Dierckx RA (2001) Physical evaluation of 511 keV coincidence imaging with a gamma camera. IEEE Trans Nucl Sci 48:98–105

    Article  Google Scholar 

  • Verger L, Biotel M, Gentet MC, Hamelin R, Mestais C, Mongellaz F, Rustique J, Sanchez G (2001) Characterization of CdTe and CdZnTe detectors for gamma ray imaging applications. Nucl Instr Methods Phys Res A 458:297–309

    Article  CAS  Google Scholar 

  • Visvikis D, Ott RJ, Wells K, Flower MA, Stephenson R, Batemen JE, Connolly J (1997) Performance characterisation of large-area BAF2-TMAE detectors for use in a whole body clinical PET camera. Nucl Instr Methods Phys Res A 392:414–420

    Article  CAS  Google Scholar 

  • Webb S (1990) From the watching of shadows: the origins of radiological tomography. Hilger, Bristol

    Google Scholar 

  • Webb S, Bindi DM, Flower MA, Ott RJ (1992) Monte Carlo modelling of the performance of a rotating slit-collimator for improved gamma-camera imaging. Phys Med Biol 37:1095–1108

    Article  PubMed  CAS  Google Scholar 

  • Webb S, Flower MA, Ott RJ (1993) Geometric efficiency of a rotating slit collimator for improved gamma-camera imaging. Phys Med Biol 38:627–638

    Article  Google Scholar 

  • Williams MB, Goode AR, Galbis-Reig V, Majewski S, Weisenberger AG, Wojcik R (2000) Performance of a PSPMT based detector for scintimammography. Phys Med Biol 45:781–800

    Article  PubMed  CAS  Google Scholar 

  • Wong W-H, Yokoyama S, Uribe Jorge, Baghaei H, Li H, Wang J, Zhang N (1999) An elongated position sensitive block detector designed using PMT quadrant-sharing configuration and asymmetric light partition. IEEE Trans Nucl Sci 46:542–545

    Article  Google Scholar 

  • Yutani K, Tatsumi M, Shiba E, Kusuoka H, Nishimura T (1999) Comparison of dual-head coincidence gamma camera FDG imaging with FDG PET in detection of breast cancer and axillary lymph node metastasis. J Nucl Med 40:1003–1008

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sharp, P.F., Welch, A., McCallum, S. (2003). Instrumentation for Measuring Metabolism. In: Feinendegen, L.E., Shreeve, W.W., Eckelman, W.C., Bahk, YW., Wagner, H.N. (eds) Molecular Nuclear Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55539-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55539-8_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62427-8

  • Online ISBN: 978-3-642-55539-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics