Skip to main content

Functional Genomics and Proteomics: Basics, Opportunities and Challenges

  • Chapter

Abstract

Genomics and proteomics are changing our understanding of biology. To date, the greatest impact has come from DNA sequencing projects, which recently culminated in the unveiling of the near-complete 3.2-billion base-pair sequence of the human genome (International Human Genome Sequencing Consortium 2001; Venter et al. 2001). We have thus advanced from having only limited information about the genetic details of biology to possessing an immense amount of structural information about individual genes. The complete genome sequences of more than 60 species are now available in databases, and many more are expected to become available in the near future. These information resources alone will have a significant impact on biomedical research. Even more importantly, blueprints of genomes can provide the basis for the integration of complex data sets derived from a wide range of studies in genomics, functional genomics, and proteomics. The resulting increase in genetic and biological information will have an even greater impact on biomedical research and the way medicine is practiced.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akiyama N, Matsuo Y, Sai H et al (2000) Identification of a series of transforming growth factor bet-responsive genes by retrovirus-mediated gene trap screening. Mol Cell Biol 20:3266–3273

    PubMed  CAS  Google Scholar 

  • Alizadeh AA, Eisen MB, Davis RE et al (2000) Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403:503–511

    PubMed  CAS  Google Scholar 

  • Alon U, Barkai N, Notterman DA et al (1999) Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonu-cleotide arrays. Proc Natl Acad Sci USA 96:6745–6750

    PubMed  CAS  Google Scholar 

  • Barbas CF, Burton DR, Scott JK, Silverman GJ (2001) Phage display: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Bishop AC, Ubersax JA, Petsch DT et al (2000) A chemical switch for inhibitor-sensitive alleles of any protein kinase. Nature 407:395–401

    PubMed  CAS  Google Scholar 

  • Bittner M, Meltzer P, Chen Y et al (2000) Molecular classification of cutaneous malignant melanoma by gene expression profiling. Nature 406:536–540

    PubMed  CAS  Google Scholar 

  • Borrebaeck CA (2000) Antibodies in diagnostics—from immunoassays to protein chips. Immunol Today 21:379–382

    PubMed  CAS  Google Scholar 

  • Borrebaeck CA, Ekstrom S, Hager AC et al (2001) Protein chips based on recombinant antibody fragments: a highly sensitive approach as detected by mass spectrometry. Biotechniques. 2001 30:1126–1132

    CAS  Google Scholar 

  • Bremer C, Tung CH, Weissleder R (2001) In vivo molecular target assessment of matrix metalloproteinase inhibition. Nature Med 7:743–748

    PubMed  CAS  Google Scholar 

  • Brown PO, Botstein D (1999) Exploring the new world of the genome with DNA arrays. Nat Genet 21:33–37

    PubMed  CAS  Google Scholar 

  • Brown SD, Nolan PM (1998) Mouse mutagenesis-systematic studies of mammalian gene function. Hum Mol Genet 7:1627–1633

    PubMed  CAS  Google Scholar 

  • Capronigro G, Abedi MR, Hurlburt AP et al (1998) Transdominant genetic analysis of a growth control pathway. Proc Natl Acad Sci USA 95:7508–7513

    Google Scholar 

  • Carnero A, Hudson JD, Hannon GJ et al (2000) Loss-of-function genetics in mammalian cells: the p53 tumor suppressor model. Nucleic Acids Res 28:2234–2241

    PubMed  CAS  Google Scholar 

  • Chakravarti A (2001) To a future of genetic medicine. Nature 409:822–823

    PubMed  CAS  Google Scholar 

  • Cheung VG, Morley M, Aguilar F et al (1999) Making and reading microarrays. Nat Genet 21:15–19

    PubMed  CAS  Google Scholar 

  • Chien C, Bartel PL, Sternglanz R et al (1991) The two hybrid system: a method to identify and clone genes for proteins that interact with a protein of interest. Proc Natl Acad Sci USA 88:9578–9582

    PubMed  CAS  Google Scholar 

  • Cho RJ, Campbell MJ, Winzeler EA et al (1998) A genome-wide transcription analysis of the mitotic cell cycle. Mol Cell 2:65–73

    PubMed  CAS  Google Scholar 

  • Clackson T (2000) Regulated gene expression systems. Gene Ther 7:120–125

    PubMed  CAS  Google Scholar 

  • Clackson T, Yang W, Rozamus LW et al (1998) Redesigning an FKBP-ligand interface to generate chemical dimerizers with novel specificity. Proc Natl Acad Sci USA 95:10437–10442

    PubMed  CAS  Google Scholar 

  • Codd EF (1998) A relational model of data for large shared data banks. 1970. MD Comput 15:162–166

    PubMed  CAS  Google Scholar 

  • De Leenheer AP, Lefevere MF, Lambert WE, Colinet ES (1985) Isotope-dilution mass spectrometry in clinical chemistry. Adv Clin Chem 24:111–161

    PubMed  Google Scholar 

  • De Risi JL, Iyer V, Brown PO (1997) Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278:680–686

    Google Scholar 

  • Deiss LP, Kimchi A (1991) A genetic tool used to identify thioredoxin as a mediator of a growth inhibitory signal. Science 252:117–120

    PubMed  CAS  Google Scholar 

  • Deiss LP, Feinstein E, Berissi H et al (1995) Identification of a novel serine/threonine kinase and a novel 15-kD protein as potential mediators of the gamma interferon-induced cell death. Genes Dev 9:15–30

    PubMed  CAS  Google Scholar 

  • Devi LA (2000) G-protein-coupled receptor dimmers in the lime light. Trends Pharmcol Sci 21:324–326

    CAS  Google Scholar 

  • Diehn M, Eisen MB, Botstein D et al (2000) Large-scale identification of secreted and membrane-associated gene products using DNA micorarrays. Nat Genet 25:58–62

    PubMed  CAS  Google Scholar 

  • Duggan DJ, Bittner M, Chen Y et al (1999) Expression profiling using DNA microarrays. Nat Genet 21:10–14

    PubMed  CAS  Google Scholar 

  • Eisen MB, Brown PO (1999) DNA arrays for analysis of gene expression. In: Weissman SM (ed) cDNA preparation and characterization. Methods in enzymology. Academic Press, San Diego, pp 179–205

    Google Scholar 

  • Eisen MB, Spellman PT, Brown PO et al (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95:14863–14868

    PubMed  CAS  Google Scholar 

  • Fields S, Song OK (1989) A novel genetic system to detect protein-protein interactions. Nature 340:245–246

    PubMed  CAS  Google Scholar 

  • Fodor SPA, Read JL, Pirung MC et al (1991) Light-directed, spatial addressable parallel chemical synthesis. Science 251:767–773

    PubMed  CAS  Google Scholar 

  • Ford KG, Souberbielle BE, Darling D, Farzaneh F (2001) Protein transduction: an alternative to genetic intervention? Gene Ther 8:1–4

    PubMed  CAS  Google Scholar 

  • Friddle CJ, Koga T, Rubin EM et al (2000) Expression profiling reveals distinct sets of genes altered during induction and regression of cardiac hypertrophy. Proc Natl Acad Sci USA 97:6745–6750

    PubMed  CAS  Google Scholar 

  • Fung ET, Thulasiraman V, Weinberger SR, Dalmasso EA (2001) Protein biochips for differential profiling. Curr Opin Biotechnol 12:65–69

    PubMed  CAS  Google Scholar 

  • Gallagher WM, Cairney M, Schott B et al (1997) Identification of p53 genetic suppressor elements which confer resistance to cisplatin. Oncogene 14:185–193

    PubMed  CAS  Google Scholar 

  • Gambhir SS, Barrio JR, Wu L et al (1998) Imaging of adenoviral-directed herpes simplex virus type 1 thymidine kinase gene expression in mice with ganciclovir. J Nucl Med 39:2003–2011

    PubMed  CAS  Google Scholar 

  • Gambhir SS, Barrio JR, Phelps ME et al (1999) Imaging adenoviral-directed reporter gene expression in living animals with positron emission tomography. Proc Natl Acad Sci USA 96:2333–2338

    PubMed  CAS  Google Scholar 

  • Garkavtsev I, Kazarov A, Gudkov AV et al (1996) Suppression of the novel growth inhibitor p33INGl promotes neoplastic transformation. Nat Genet 14:415–420

    PubMed  CAS  Google Scholar 

  • Golub TR, Slonim DK, Tamayo P et al (1999) Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286:531–537

    PubMed  CAS  Google Scholar 

  • Goerg A, Obermaier C, Boguth G et al (2000) The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 21:1037–1053

    Google Scholar 

  • Gudkov AV, Zelnick CR, Kazarov AR et al (1993) Isolation of genetic suppressor elements, inducing resistance to to-poisomerase II-interactive cytotoxic drugs, from human topoisomerase II cDNA. Proc Natl Acad Sci USA 90:3231–3235

    PubMed  CAS  Google Scholar 

  • Gudkov AV, Roninson IB (1997) Isolation of genetic suppressor elements (GSEs) from random fragment cDNA libraries in retroviral vectors. Methods Mol Biol 69:221–240

    PubMed  CAS  Google Scholar 

  • Gudkov AV, Roninson IB, Brown R (1999) Functional approaches to gene isolation in mammalian cells. Science 285:299

    Google Scholar 

  • Gygi SP, Aebersold R (2000) Mass spectrometry and Proteomics. Curr Opin Chem Biol 4:489–494

    PubMed  CAS  Google Scholar 

  • Gygi SP, Rochon Y, Franza BR, Aebersold R (1999a) Correlation between protein and mRNA abundance in yeast. Mol Cell Biol 19:1720–1730

    PubMed  CAS  Google Scholar 

  • Gygi SP, Rist B, Gerber SA et al (1999 b) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 17:994–999

    PubMed  CAS  Google Scholar 

  • Gyuris J, Golemis E, Chertkov H et al (1993) Cdil, a human G1 and S phase protein phosphatase that associates with Cdk2. Cell 75:791–803

    PubMed  CAS  Google Scholar 

  • Haab BB (2001) Advances in protein microarray technology for protein expression and interaction profiling. Curr Opin Drug Discov Devel 4:116–123

    PubMed  CAS  Google Scholar 

  • Hacia J (1999) Resequencing and mutational analysis using oligonucleotide microarrays. Nat Genet 21:42–47

    PubMed  CAS  Google Scholar 

  • Hannon GJ, Sun P, Concklin DS et al (1999) MaRX: an approach to genetics in mammalian cells. Science 283:1129–1130

    PubMed  CAS  Google Scholar 

  • Harlow E, Lane D (1998) Using antibodies: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Hirst M, Ho C, Sabourin L et al (2001) A two-hybrid system for transactivator bait proteins. Proc Natl Acad Sci USA 98:8726–8731

    PubMed  CAS  Google Scholar 

  • Hochschild A, Dove S (1998) Protein-protein contacts that activate and repress prokaryotic transcription. Cell 92:597–600

    PubMed  CAS  Google Scholar 

  • Holzmayer TA, Pestov DG, Roninson IB (1992) Isolation of dominant negative mutants and inhibitory antisense RNA sequences by expression selection of random DNA fragments. Nucleic Acids Res 20:711–717

    PubMed  CAS  Google Scholar 

  • Huang R (2001) Detection of multiple proteins in an antibody-based protein microarray system. J Immunol Methods 255:1–13

    PubMed  CAS  Google Scholar 

  • Hudson JD, Shoaibi MA, Maestro R et al (1999) A proin-flammatory cytokine inhibits p53 tumor suppressor activity. J Exp Med 190:1375–1382

    PubMed  CAS  Google Scholar 

  • Hughes TR, Marton MJ, Jones AR et al (2000) Functional discovery via a compendium of expression profiles. Cell 102:109–126

    PubMed  CAS  Google Scholar 

  • Huse WD, Sastry L, Iverson SA et al (1989) Generation of a large combinatorial library of the immunoglobulin repertoire in phage lambda. Science 246:1275–1281

    PubMed  CAS  Google Scholar 

  • International Human Genome Sequencing Consortium (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    Google Scholar 

  • Ishida Y, Leder P (1999) RET: a polyA-trap retrovirus vector for the reversible disruption and expression monitoring of gene in living cells. Nucleic Acids Res 27:35

    Google Scholar 

  • Ito T, Tashiro K, Muta S et al (2000) Toward a protein-protein interaction map of the budding yeast: a comprehensive system to examine two-hybrid interactions in all possible combinations between the yeast proteins. Proc Natl Acad Sci USA 97:1143–1147

    PubMed  CAS  Google Scholar 

  • Ito T, Chiba T, Ozawa R et al (2001) A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc Natl Acad Sci USA 98:4569–4574

    PubMed  CAS  Google Scholar 

  • Iyer VR, Eisen MB, Ross DT et al (1999) The transcriptional program in the response of human fibroblasts to serum. Science 283:83–87

    PubMed  CAS  Google Scholar 

  • Iyer VR, Horak CE, Scafe CS et al (2001) Genomics binding sites of the yeast cell cycle transcription factors SBF and MBF. Nature 409:533–538

    PubMed  CAS  Google Scholar 

  • Jones VW, Kenseth JR, Porter MD et al (1998) Microminiaturized immunoassays using atomic force microscopy and compositionally patterned antigen arrays. Anal Chem 70:1233–1241

    PubMed  CAS  Google Scholar 

  • Joos TO, Schrenk M, Hopfl P et al (2000) A microarray enzyme-linked immunosorbent assay for autoimmune diagnostics. Electrophoresis 21:2641–2650

    PubMed  CAS  Google Scholar 

  • Johnsson N, Varshavsky A (1994) Split ubiquitin as a sensor of protein interactions in vivo. Proc Natl Acad Sci USA 91:10340–10344

    PubMed  CAS  Google Scholar 

  • Joung JK, Ramm EI, Pabo CO (2000) A bacterial two-hybrid selection system for studying protein-DNA and protein-protein interactions. Proc Natl Acad Sci USA 97:7382–7387

    PubMed  CAS  Google Scholar 

  • Khan J, Wei JS, Ringner M et al (2001) Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nature Med 7:673–679

    PubMed  CAS  Google Scholar 

  • Kharpko KR, Khorlin AA, Ivanov IB et al (1991) Hybridization of DNA with oligonucleotides immobilized in gel: a convenient method for detecting single base substitutions. Mol Biol 25:581–591

    Google Scholar 

  • Koide K, Finkelstein JM, Ball Z, Verdine GL (2001) A synthetic library of cell-permeable molecules. J Am Chem Soc 123:398–408

    PubMed  CAS  Google Scholar 

  • Kojima T, Kitamura T (1999) A signal sequence trap based on a constitutively active cytokine receptor. Nat Biotech-nol 17:487–490

    CAS  Google Scholar 

  • Lashkari DA, De Risi JL, McCusker JH et al (1997) Yeast genome micorarrays for parallel genetic and gene expression analysis of the yeast genome. Proc Natl Acad Sci USA 94:13057–13062

    PubMed  CAS  Google Scholar 

  • Licitra EJ, Liu JO (1996) A three-hybrid system for detecting small ligand-protein receptor interactions. Proc Natl Acad Sci USA 93:12817–12821

    PubMed  CAS  Google Scholar 

  • Lin H, Abida WM, Sauer RT et al (2000) Dexamethasone-Methotrexate: an efficient chemical inducer of protein dimerization in vivo. J Am Chem Soc 122:4247–4248

    CAS  Google Scholar 

  • Link AJ, Eng J, Schieltz DM et al (1999) Direct analysis of protein complexes using mass spectrometry. Nat Biotechnol 17:676–682

    PubMed  CAS  Google Scholar 

  • Lockhart DJ, Winzeler EA (2000) Genomics, gene expression and DNA arrays. Nature 405:827–836

    PubMed  CAS  Google Scholar 

  • Lockhart DJ, Dong H, Byrne MC et al (1996) Expression monitoring by hybridization to high density oligonucleotide arrays. Nat Biotechnol 14:1675–1680

    PubMed  CAS  Google Scholar 

  • MacBeath G (2001) Chemical genomics: what will it take and who gets to play? Genome Biol 2:2005

    Google Scholar 

  • MacBeath G, Koehler AN, Schreiber SL (1999) Printing small molecules as micorarrays and detecting protein-li-gand interactions en masse. J Am Chem Soc 121:7967–7968

    CAS  Google Scholar 

  • Mahon GM, Whitehead IP (2001) Retrovirus cDNA expression library screening for oncogenes. Methods Enzymol 332:211–221

    PubMed  CAS  Google Scholar 

  • Marton MJ, De Risi JL, Bennett HA et al (1998 a) Drug target validation and identification of secondary drug target effects using DNA microarrays. Nat Med 4:1293–1301

    PubMed  CAS  Google Scholar 

  • McCraith S, Holtzman T, Moss B, Fields S (2000) Genomewide analysis of vaccinia virus protein-protein interactions. Proc Natl Acad Sci USA 97:4879–4884

    PubMed  CAS  Google Scholar 

  • Medico E, Gambarotta ZG, Gentile A et al (2001) A gene trap vector system for identifying transcriptionally responsive genes. Nat Biotechnol 19:579–582

    PubMed  CAS  Google Scholar 

  • Mendelsohn AR, Brent R (1999) Protein interaction methods: towards an endgame. Science 284:1948–1950

    PubMed  CAS  Google Scholar 

  • Mendoza LG, McQuary P, Mongan A et al (1999) High-throughput microarray-based enzyme-linked immunosorbent assay (ELISA). Biotechniques 27:778–780; 782-788

    PubMed  CAS  Google Scholar 

  • Mitchell K, Pinson KI, Kelly OG et al (2001) Functional analysis of secreted and transmembrane proteins critical for mouse development. Nat Genet 28:241–249

    PubMed  CAS  Google Scholar 

  • Morgenstern JP, Land H (1990) Advanced mammalian gene transfer: high titre retroviral vectors with multiple drug selection markers and a complementary helper-free packaging cell line. Nucleic Acids Res 18:3587–3596

    PubMed  CAS  Google Scholar 

  • Nellen W, Sczakiel G (1996) In vitro and in vivo action of antisense RNA. Mol Biotechnol 6:7–15

    PubMed  CAS  Google Scholar 

  • Pandey A, Mann M (2000) Proteomics to study genes and genomes. Nature 405:837–846

    PubMed  CAS  Google Scholar 

  • Pelletier JN, Campbell-Valois FX, Michnick SW(1998) Oligo-merization domain-directed reassembly of active dihy-drofolate reductase from rationally designed fragments. Proc Natl Acad Sci USA 95:12141–12146

    PubMed  CAS  Google Scholar 

  • Pérou CM, Jeffrey SS, Van De Rijn M et al (1999) Distinctive gene expression patterns in human mammary epithelial cells and breast cancers. Proc Natl Acad Sci USA 96:9212–9217

    PubMed  Google Scholar 

  • Rain JC, Selig L, De Reuse H et al (2001) The protein-protein interaction map of Helicobacter pylori. Nature 409:211–215

    PubMed  CAS  Google Scholar 

  • Remy I, Michnick SW (1999) Clonal selection and in vivo quantitation of protein interactions with protein-fragment complementation assays. Proc Natl Acad Sci USA 96:5394–5399

    PubMed  CAS  Google Scholar 

  • Ren B, Robert F, Wyrick JJ et al (2000) Genome-wide location and function of DNA binding proteins. Science 290:2306–2309

    PubMed  CAS  Google Scholar 

  • Risch NJ (2001) Searching for genetic determinants in the new millennium. Nature 405:847–856

    Google Scholar 

  • Rojo-Niersbach E, Morley D, Heck S, Lehming N (2000) A new method for the selection of protein interactions in mammalian cells. Biochem J 348:585–590

    PubMed  CAS  Google Scholar 

  • Roses AD (2000) Pharmacogenetics and the practice of medicine. Nature 405:857-856

    Google Scholar 

  • Rowley A, Choudhary JS, Marzioch M et al (2000) Applications of protein mass spectrometry in cell biology. Methods 20:383–397

    PubMed  CAS  Google Scholar 

  • Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene expression patterns with a cDNA microarray. Science 270:467–470

    PubMed  CAS  Google Scholar 

  • SenGupta DJ, Zhang B, Kraemer B et al (1996) Three-hybrid system to detect RNA-protein interactions in vivo. Proc Natl Acad Sci USA 93:8496–8501

    PubMed  CAS  Google Scholar 

  • Senior K (1999) Fingerprinting disease with protein chip arrays. Mol Med Today 5:326–327

    PubMed  CAS  Google Scholar 

  • Shalon D, Smith SJ, Brown PO (1996) A DNA micro-array system for analyzing complex DNA samples using two-color fluorescent probe hybridization. Genome Res 6:639–645

    PubMed  CAS  Google Scholar 

  • Shevchenko A, Jensen ON, Podtelejnikov AV et al (1996) Linking genome and proteome by mass spectrometry: large-scale identification of yeast proteins from two dimensional gels. Proc Natl Acad Sci USA 94:14440–14445

    Google Scholar 

  • Shimizu N, Sugimoto K, Tang J et al (2000) High-performance affinity beads for identifying drug receptors. Nat Biotechnol 18:877–881

    PubMed  CAS  Google Scholar 

  • Smith GP (1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228:1315–1317

    PubMed  CAS  Google Scholar 

  • Smith GP, Petrenko VA (1997) Phage display. Chem Rev 97:391–410

    PubMed  CAS  Google Scholar 

  • Southern EM, Maskos U, Elder JK (1992) Analyzing and comparing nucleic acid sequences by hybridization to arrays of oligonucleotides: evaluation using experimental models. Genomics 13:1008–1017

    PubMed  CAS  Google Scholar 

  • Spellman PT, Sherlock G, Zhang MQ et al (1998) Comprehensive identification of cell-cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell 9:3273–3297

    PubMed  CAS  Google Scholar 

  • Stagljar I, Korostensky C, Johnsson N et al (1998) A genetic system based on split-ubiquitin for the analysis of interactions between protein in vivo. Proc Natl Acad Sci USA 95:5187–5192

    PubMed  CAS  Google Scholar 

  • Sun P, Dong P, Dai K et al (1998) p53-independent role of MDM2 in TGF-betal resistance. Science 282:2270–2272

    PubMed  CAS  Google Scholar 

  • Tashiro K, Tada H, Heilker R et al (1993) Signal sequence trap: a cloning strategy for secreted proteins and type I membrane proteins. Science 261:600–603

    PubMed  CAS  Google Scholar 

  • Uetz P, Giot L, Cagney G et al (2000) A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403:623–627

    PubMed  CAS  Google Scholar 

  • Van Steensel B, Delrow J, Henikoff S (2001) Chromatin profiling using targeted DNA adenine methyltransferase. Nat Genet 27:304–308

    PubMed  Google Scholar 

  • Venter JC, Adams MD, Myers EW et al (2001) The sequencing of the human genome Science 291:1304–1351

    PubMed  CAS  Google Scholar 

  • Vidal M, Legrain P(1999) Yeast forward and reverse n’n-hy-brid systems. Nucleic Acids Res 27:919–929

    PubMed  CAS  Google Scholar 

  • Visintin M, Tse E, Axelson H et al (1999) A. Selection of antibodies for intracellular function using a teo-hybrid in vivo system. Proc Natl Acad Sci USA 96:11723–11728

    PubMed  CAS  Google Scholar 

  • Von Eggeling F, Davies H, Lomas L et al (2000) Tissue-specific microdissection coupled with ProteinChip array technologies: applications in cancer research. Biotechniques 29:1066–1070

    Google Scholar 

  • Walhout AJ, Sorcella R, Lu X et al (2000) Protein interaction mapping in C. elegans using proteins involved in vulval development. Science 287:116–122

    PubMed  CAS  Google Scholar 

  • Washburn MP, Wolters D, Yates JR III (2001) Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol 19:242–247

    PubMed  CAS  Google Scholar 

  • Wender PA, Mitchell DJ, Pattabiraman K et al (2000) The design, synthesis, evaluation of molecules that enable or enhance cellular uptake: peptoid molecular transporters. Proc Natl Acad Sci USA 97:13003–13008

    PubMed  CAS  Google Scholar 

  • Whitney M, Rockenstein E, Cantin G et al (1998) A genome-wide functional assay of signal transduction in living mammalian cells. Nat Biotechnol 16:1329–1333

    PubMed  CAS  Google Scholar 

  • Wittes J, Friedman H (1999) Searching for evidence of altered gene expression: a comment on statistical analysis of microarray data. J Natl Cancer Inst 91:400–401

    PubMed  CAS  Google Scholar 

  • Wittke S, Lewke N, Mueller S et al (1999) Probing the molecular environment of membrane proteins in vivo. Mol Cell Biol 10:2519–2530

    CAS  Google Scholar 

  • Wodicka L, Dong H, Mittman M et al (1997) Genome-wide expression monitoring in Saccharomyces cerevisiae. Nat Biotechnol 15:1359–1367

    PubMed  CAS  Google Scholar 

  • Xu X, Leo C, Jang Y et al (2001) Dominant effector genetics in mammalian cells. Nat Genet 27:23–29

    PubMed  CAS  Google Scholar 

  • Yang M, Wu Z, Fields S (1995) Protein-peptide interactions analyzed with the yeast-two-hybrid system. Nucleic Acids Res 23:1152–1162

    PubMed  CAS  Google Scholar 

  • Yates JR III, Eng JK, McCormack AL, Schieltz D (1995) Method to correlate tandem mass spectra of modified peptides to amino acid sequences in the protein database. Anal Chem 67:1426–1436

    PubMed  CAS  Google Scholar 

  • Yu Y, Annala AJ, Barrio JR et al (2000) Quantification of target gene expression by imaging reporter gene expression in living animals. Nat Med 6:933–937

    PubMed  CAS  Google Scholar 

  • Zambrowicz BP, Friedrich GA, Buxton EC et al (1998) Disruption and sequence identification of 2000 genes in mouse embryonic stem cells. Nature 392:608–611

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kley, N., Schmidt, S., Berlin, V., Loferer, H., Gyuris, J. (2003). Functional Genomics and Proteomics: Basics, Opportunities and Challenges. In: Feinendegen, L.E., Shreeve, W.W., Eckelman, W.C., Bahk, YW., Wagner, H.N. (eds) Molecular Nuclear Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55539-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55539-8_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62427-8

  • Online ISBN: 978-3-642-55539-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics