Skip to main content

Development of DNA-based Radiopharmaceuticals Carrying Auger-Electron Emitters for Anti-gene Radiotherapy

  • Chapter
Molecular Nuclear Medicine

Abstract

Most gene therapy methods currently used to correct gene expression rely on either gene introduction, modification, replacement or antisense approaches. Typically, gene therapy seeks to add-back missing functionality. Antisense therapy is employed to reduce or eliminate expression of specific gene products. A more direct manipulation of gene function at the DNA level may be advantageous in circumstances where gene replacement alone is not sufficient to prevent or treat disease due to continued expression of defective gene products, or for cases in which continuous long-term antisense treatment is impractical or impossible. Consequently, exploration of approaches to change gene function directly at the DNA level may, in some cases, provide an important alternative to current methods of gene therapy. Targeting specific genes unique to cancer cells may also be a way to selectively eliminate such cells via induced cell necrosis or apoptosis; and, perhaps, even a way to genetically “correct” some aspect of neoplastic cell behavior to cause reversion to a non-neoplastic phenotype.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baumann P, West SC (1998) DNA end-joining catalyzed by human cell-free extracts. Proc Natl Acad Sci 95:14066–14070

    Article  PubMed  CAS  Google Scholar 

  • Belousov ES, Afonia IA, Kutyavin IV et al (1998) Triplex targeting of a native gene in permeabilized intact cells: covalent modification of the gene for the chemokine receptor ccr5. Nucleic Acids Res 26:1324–1328

    Article  PubMed  CAS  Google Scholar 

  • Bennett RA, Wilson DM, Wong D, Demple B (1997) Interaction of human apurinic endonuclease and DNA polymerase beta in the base excision repair pathway. Proc Natl Acad Sci USA 94:7166–7169

    Article  PubMed  CAS  Google Scholar 

  • Blaisdell JO, Wallace SS (2001) Abortive base-excision repair of radiation-induced clustered DNA lesions in Escherichia coli. Proc Natl Acad Sci USA 98:7426–7430

    Article  PubMed  CAS  Google Scholar 

  • Cappelli E, Taylor R, Cevasco M et al (1997) Involvement of XRCC1 and DNA ligase III gene products in DNA base excision repair. J Biol Chem 272:23970–23975

    Article  PubMed  CAS  Google Scholar 

  • Chan PP, Glazer PM (1997) Triplex DNA: fundamentals, advances, and potential applications for gene therapy. J Mol Med 75:267–282

    Article  PubMed  CAS  Google Scholar 

  • Chaudhry MA, Weinfeld M (1995) Induction of doublestrand breaks by SI nudease, mung bean nuclease and nuclease PI in DNA containing abasic sites and nicks. Nucleic Acids Res 23:3805–3809

    Article  PubMed  CAS  Google Scholar 

  • Chen DS, Herman T, Demple B (1991) Two distinct human DNA diesterases that hydrolyze 3′-blocking deoxyribose fragments from oxidized DNA. Nucleic Acids Res 19:5907–5914

    Article  PubMed  CAS  Google Scholar 

  • Dar ME, Jorgensen TJ (1995) Deletions at short direct repeats and base substitutions are characteristic mutations for bleomycin-induced double-and single-strand breaks, respectively, in a human shuttle vector system. Nucleic Acids Res 23:3224–3230

    Article  PubMed  CAS  Google Scholar 

  • Delporte C, Panyutin IG, Sedelnikova OA et al (1997) Triplex-forming oligonucleotides can modulate aquaporin-5 gene expression in epithelial cells. Antisense Nucleic Acid Drug Dev 7:523–529

    Article  PubMed  CAS  Google Scholar 

  • DeMott MS, Zigman S, Bambara RA (1998) Replication protein A stimulates long patch DNA base excision repair. J Biol Chem 273:27492–27498

    Article  PubMed  CAS  Google Scholar 

  • DeSombre ER, Shafii B, Hanson RN et al (1992) Estrogen receptor-directed radiotoxicity with Auger electrons: specificity and mean lethal dose. Cancer Res 52:5752–5758

    PubMed  CAS  Google Scholar 

  • Feinendegen LE (1975) Biological damage from the Auger effects, possible benefits. Radiat Environ Biophys 12:85–99

    Article  PubMed  CAS  Google Scholar 

  • Feinendegen LE, Bond VP, Hughes WL (1966) 125-I-DU (5-iodo-2-deoxyuridine) in autoradiographic studies of cell proliferation. Exp Cell Res 43:107–119

    Article  PubMed  CAS  Google Scholar 

  • Feinendegen LE, Henneberg P, Tisljar-Lentulis G (1977) DNA strand breakage and repair in human kidney cells after exposure to incorporated iodine-125 and cobalt-60 y-rays. Curr Topics Rad Res Q 12:436–452

    Google Scholar 

  • Feldmann E, Schmiemann V, Goedecke W et al (2000) DNA double-strand break repair in cell-free extracts from Ku80-deficient cells: implications for Ku serving as an alignment factor in non-homologous DNA end joining. Nucleic Acids Res 28:2585–2596

    Article  PubMed  CAS  Google Scholar 

  • Fojo AT, Whang-Peng J, Gottesman MM, Pastan I (1985) Amplification of DNA sequences in human multidrug-re-sistant KB carcinoma cells. Proc Natl Acad Sci USA 82:7661–7665

    Article  PubMed  CAS  Google Scholar 

  • Frank-Kamenetskii MD, Mirkin SM (1995) Triplex DNA structures. Annu Rev Biochem 64:65–95

    Article  PubMed  CAS  Google Scholar 

  • Friedberg EC, Walker GC, Siede W (1995) DNA repair and mutagenesis. ASM Press, Washington DC

    Google Scholar 

  • Frosina G, Fortini P, Rossi O et al (1996) Two pathways for base excision repair in mammalian cells. J Biol Chem 271:9573–9578

    Article  PubMed  CAS  Google Scholar 

  • Gibbs RA, Camakaris J, Hodgson GS, Martin RF (1987) Molecular characterization of 1251 decay and X-ray-induced HPRT mutants in CHO cells. Int J Radiat Biol Relat Stud Phys Chem Med 51:193–199

    Article  PubMed  CAS  Google Scholar 

  • Giovannangeli C, Helene C (1997) Progress in developments of triplex-based strategies. Antisense Nucleic Acids Drug Dev 7:413–421

    Article  CAS  Google Scholar 

  • Giovannangeli C, Diviacco S, Labrousse V et al (1997) Accessibility of nuclear DNA to triplex-forming oligonucleotides: the integrated HIV-1 provirus as a target. Proc Natl Acad Sci USA 94:79–84

    Article  PubMed  CAS  Google Scholar 

  • Gu XY, Bennett RA, Povirk LF (1996) End-joining of free radical-mediated DNA double-strand breaks in vitro is blocked by the kinase inhibitor wortmannin at a step preceding removal of damaged 3′ termini. J Biol Chem 271:19660–19663

    Article  PubMed  CAS  Google Scholar 

  • Gu YS, Jin SF, Gao YJ et al (1997) Ku70-deficient embryonic stem cells have increased ionizing radiosensitivity, defective DNA end-binding activity, and inability to support V(D)J recombination. Proc Natl Acad Sci USA 94:8076–8081

    Article  PubMed  CAS  Google Scholar 

  • Helene C (1991) The anti-gene strategy: control of gene expression by triplex-forming-oligonucleotides. Anticancer Drug Des 6:569–584

    PubMed  CAS  Google Scholar 

  • Henner WD, Grunberg SM, Haseltine WA (1983 a) Enzyme action at 3′ termini of ionizing radiation-induced DNA strand breaks. J Biol Chem 258:15198–15205

    PubMed  CAS  Google Scholar 

  • Henner WD, Rodriguez LO, Hecht SM, Haseltine WA (1983 b) Gamma-ray induced deoxyribonucleic acid strand breaks, J Biol Chem 258:711–713

    PubMed  CAS  Google Scholar 

  • Hoglund E, Stenerlow B (2001) Induction and rejoining of DNA double-strand breaks in normal human skin fibroblasts after exposure to radiation of different linear energy transfer: possible roles of track structure and chromatic organization. Radiat Res 155:818–825

    Article  PubMed  CAS  Google Scholar 

  • Howell RW, Azure MT, Narra VR, Rao DV (1994) Relative biological effectiveness of alpha-particle emitters in-vivo at low-doses. Radiat Res 137:352–360

    Article  PubMed  CAS  Google Scholar 

  • Jeggo PA (1998) Identification of genes involved in repair of dna double-strand breaks in mammalian cells. Radiat Res 150:S80–S91

    Article  PubMed  CAS  Google Scholar 

  • Jeggo PA, Tesmer J, Chen DJ (1991) Genetic-analysis of ionizing-radiation sensitive mutants of cultured mammalian-cell lines. Mutat Res 254:125–133

    Article  PubMed  CAS  Google Scholar 

  • Jones GDD, Boswell TV, Ward JF (1994) Effects of postirradiation temperature on the yields of radiation-induced single-strand and double-strand breakage in SV40 DNA. Radiat Res 138:291–296

    Article  PubMed  CAS  Google Scholar 

  • Karamychev VN, Panyutin IG, Reed MW, Neumann RD (1997) Effect of radionuclide linker structure on DNA cleavage by 125I-labeled oligonucleotides. Antisense Nucleic Acid Drug Dev 7:549–557

    Article  PubMed  CAS  Google Scholar 

  • Karamychev VN, Zhurkin VB, Garges S et al (1999) Detecting the DNA kinks in a DNA-CRP complex in solution with iodine-125 radioprobing. Nat Struct Biol 6:747–750

    Article  PubMed  CAS  Google Scholar 

  • Karamychev VN, Neumann RD, Panyutin IG, Zhurkin VB (2000 a) Folding of RNA and DNA strands in transcription complex as revealed by iodine-125 radioprobing. J Biomol Struct Dyn 11:155–167

    Article  Google Scholar 

  • Karamychev VN, Panyutin IG, Meyong-Kon K et al (2000 b) DNA cleavage by In-111 labeled oligonucleotides. J Nucl Med 41:1093–1101

    PubMed  CAS  Google Scholar 

  • Karamychev VN, Reed MW, Neumann RD, Panyutin IG (2000 c) Distribution of DNA strand breaks produced by 1-123 and In-111 in synthetic oligodeoxynucleotides. Acta Oncol 39:687–692

    Article  PubMed  CAS  Google Scholar 

  • Kraemer KH, Scidman MM (1989) Use of supf, an escheri-chia-coli tyrosine suppressor transfer-RNA gene, as a mutagenic target in shuttle-vector plasmids. Mutat Res 220:61–72

    Article  PubMed  CAS  Google Scholar 

  • Kubota Y, Nash RA, Klungland A et al (1996) Reconstitution of DNA base excision-repair with purified human proteins: interaction between DNA polymerase beta and the XRCC1 protein. EMBO J 15:6662–6670

    PubMed  CAS  Google Scholar 

  • Lees-Miller SP, Godbout R, Chan DW et al (1995) Absence of 0350 subunit of DNA-activated protein kinase from a radiosensitive human cell line. Science 267:1183–1185

    Article  PubMed  CAS  Google Scholar 

  • Lehmann AR, Hoeijmakers JHJ, Vanzeeland AA et al (1992) Workshop on DNA-repair. Mutat Res 273:1–28

    Article  PubMed  CAS  Google Scholar 

  • Lukhtanov EA, Mills AG, Kutyavin IV et al (1997) Minor groove DNA alkylation directed by major groove triplex forming oligodeoxyribonucleotides. Nucleic Acids Res 25:5077–5084

    Article  PubMed  CAS  Google Scholar 

  • Majumdar A, Khorlin A, Dyatkina N et al (1998) Targeted gene knockout mediated by triple helix forming oligonucleotides. Nat Genet 20:212–214

    Article  PubMed  CAS  Google Scholar 

  • Malkov L, Panyutin IG, Neumann RD et al (2000) Tracing the nucleic acids strands in large nucleoprotein complexes with Auger electrons: structure of a RecA-three stranded DNA complex. J Mol Biol 299:629–640

    Article  PubMed  CAS  Google Scholar 

  • Martin RF, Haseltine WA (1981) Range of radiochemical damage to DNA with decay of iodine-125. Science 213:896–898

    Article  PubMed  CAS  Google Scholar 

  • Mason RM, Thacker J, Fairman MP (1996) The joining of non-complementary DNA double-strand breaks by mammalian extracts. Nucleic Acids Res 24:4946–4953

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto Y, Kim K, Bogenhagen DF (1994) Proliferating cell nuclear antigen-dependent abasic site repair in Xenopus laevis oocytes: an alternative pathway of base excision DNA repair. Mol Cell Biol 14:6187–6197

    Article  PubMed  CAS  Google Scholar 

  • Mezhevaya K, Winters TA, Neumann RD (1999) Gene targeted DNA double strand break induction by 125I-labeled triplex forming oligonucleotides is highly mutagenic following repair in human cells. Nucleic Acids Res 27:4282–4290

    Article  PubMed  CAS  Google Scholar 

  • Milligan JR, Aguilera JA, Paglinawan RA et al (2001) DNA strand break yields after post-high LET irradiation incubation with endonuclease-III and evidence for hydroxyl radical clustering. Int J Radiat Biol 77:155–164

    Article  PubMed  CAS  Google Scholar 

  • Mirkin SM, Frank-Kamenetskii MD (1994) H-DNA and related structures. Annu Rev Biophys Biomol Struct 23:541–576

    Article  PubMed  CAS  Google Scholar 

  • Nash RA, Caldecott KW, Barnes DE, Lindahl T (1997) XRCC1 protein interacts with one of two distinct forms of DNA ligase III. Biochemistry 36:5207–5211

    Article  PubMed  CAS  Google Scholar 

  • Nealon K, Nicholl ID, Kenny MK (1996) Characterization of the DNA polymerase requirement of human base excision repair. Nucleic Acids Res 24:3763–3770

    Article  PubMed  CAS  Google Scholar 

  • Nikjoo H, O’Neill P, Terrissol M, Goodhead DT (1994) Modelling of radiation-induced DNA damage: the early physical events. Int J Radiat Biol 66:453–457

    Article  PubMed  CAS  Google Scholar 

  • North P, Ganesh A, Thacker J (1990) The rejoining of double-strand breaks in DNA by human cell extracts. Nucleic Acids Res 18:6205–6210

    Article  PubMed  CAS  Google Scholar 

  • Painter RB, Young BR, Burki HJ (1974) Non-repairable strand breaks induced by 125I incorporated into mammalian DNA. Proc Natl Acad Sci USA 71:4836–4838

    Article  PubMed  CAS  Google Scholar 

  • Panyutin IG, Neumann RD (1994) Sequence-specific DNA double-strand breaks induced by triplex forming 125I labeled oligonucleotides. Nucleic Acids Res 22:4979–4982

    Article  PubMed  CAS  Google Scholar 

  • Panyutin IG, Neumann RD (1996) Sequence-specific DNA breaks produced by triplex-directed decay of iodine-125. Acta Oncol 35:817–823

    Article  PubMed  CAS  Google Scholar 

  • Panyutin IG, Neumann RD (1997) Radioprobing of DNA: distribution of DNA breaks produced by decay of 125I incorporated into a triplex-forming oligonucleotide correlates with geometry of the triplex. Nucleic Acids Res 25:883–887

    Article  PubMed  CAS  Google Scholar 

  • Pastwa E, Neumann RD, Winters TA (2001a) In vitro repair of complex unligatable oxidatively induced DNA double-strand breaks by human cell extracts. Nucleic Acids Res 29:E78–E78

    Article  PubMed  CAS  Google Scholar 

  • Pastwa E, Mezhevaya K, Neumann RD, Winters TA (2001b) Repair of radiation-induced DNA double-strand breaks is dependent upon radiation quality and the structural complexity of double strand breaks. Radiat Res 159:251–261

    Article  Google Scholar 

  • Pomplun E, Terrissol M, Demonchy M (1996) Modelling of initial events and chemical behaviour of species induced in DNA units by Auger electrons from 1251, 1231 and carbon. Acta Oncol 35:857–862

    Article  PubMed  CAS  Google Scholar 

  • Povirk LF, Han YH, Steighner RJ (1989) Structure of bleo-mycin-induced DNA double-strand breaks: predominance of blunt ends and single-base 5′ extensions. Biochemistry 28:5808–5814

    Article  PubMed  CAS  Google Scholar 

  • Prasad R, Singhal RK, Srivastava DK et al (1996) Specific interaction of DNA polymerase beta and DNA ligase I in a multiprotein base excision repair complex from bovine testis. J Biol Chem 271:16000–16007

    Article  PubMed  CAS  Google Scholar 

  • Purmal AA, Lampman GW, Kow YW, Wallace SS (1994) The sequence context-mispairing of 5-hydroxycytosine and 5-hydroxyuridine in-vitro. DNA Damage 726:361–363

    CAS  Google Scholar 

  • Raha M, Wang G, Scidman MM, Glazer PM (1996) Muta-genesis by third-strand-directed psoralen adducts in repair-deficient human cells: high frequency and altered spectrum in xeroderma pigmentosum variant. Proc Natl Acad Sci USA 93:2941–2946

    Article  PubMed  CAS  Google Scholar 

  • Reed MW, Panyutin IG, Hamlin D et al (1997) Synthesis of 125I-labeled oligonucleotides from tributylstannylbenzamide conjugates. Bioconjug Chem 8:238–243

    Article  PubMed  CAS  Google Scholar 

  • Riballo E, Critchlow SE, Teo SH et al (1999) Identification of a defect in DNA ligase IV in a radiosensitive leukaemia patient. Curr Biol 9:699–702

    Article  PubMed  CAS  Google Scholar 

  • Sarker AH, Watanabe S, Seki S et al (1995) Oxygen radicalinduced single-strand DNA breaks and repair of the damage in a cell-free system. Mutat Res DNA Repair 337:85–95

    Article  PubMed  CAS  Google Scholar 

  • Sedelnikova OA, Panyutin IG, Thierry AR, Neumann RD (1998) Radiotoxicity of iodine-125-labeled oligodeoxyri-bonucleotides in mammalian cells. J Nucl Med 39:1412–1418

    PubMed  CAS  Google Scholar 

  • Sedelnikova OA, Panyutin IG, Luu AN, Neumann RD (1999) The stability of DNA triplexes inside cells as studied by iodine-125 radioprinting. Nucleic Acids Res 27:3844–3850

    Article  PubMed  CAS  Google Scholar 

  • Shamsul Hoque AT, Panyutin IG, Baum BJ (1999) Use of triplex-forming oligonucleotides and adenoviral constructs for studying the regulation of gene expression. Methods 18:266–272

    Article  PubMed  CAS  Google Scholar 

  • Soyfer VN, Potoman VN (1995) Triple-helical nucleic acids. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Suh D, Wilson DM, Povirk LF (1997) 3′-Phosphodiesterase activity of human apurinic/apyrimidinic endonuclease at DNA double-strand break ends. NAR 25:2495–2500

    Article  PubMed  CAS  Google Scholar 

  • Sundell-Bergman S, Johanson KJ (1980) Repairable and unrepairable DNA strand breaks induced by decay of 3H and 125I incorporated into DNA of mammalian cells. Radiat Environ Biophys 18:239–248

    Article  PubMed  CAS  Google Scholar 

  • Van Holde K, Zlatanova J (1994) Unusual DNA structures, chromatin and transcription. Bioessays 16:59–68

    Article  PubMed  Google Scholar 

  • Ward JF (1994) The complexity of DNA damage: relevance to biological consequences. Int J Radiat Biol 66:427–432

    Article  PubMed  CAS  Google Scholar 

  • Ward JF (1995) Radiation mutagenesis—the initial DNA lesions responsible. Radiat Res 143:355

    Article  CAS  Google Scholar 

  • Ward JF (2000) Complexity of damage produced by ionizing radiation. Cold Spring Harbor Symp Quant Biol 65:377–382

    Article  PubMed  CAS  Google Scholar 

  • Weinfeld M, Lee J, Gu RQ et al (1997) Use of a postlabelling assay to examine the removal of radiation-induced DNA lesions by purified enzymes and human cell extracts. Mutat Res Fund Mol M 378:127–137

    Article  CAS  Google Scholar 

  • Wells RD, Collier DA, Hanvey JC et al (1998) The chemistry and biology of unusual DNA structures adopted by oligopurine oligopyrimidine sequences. FASEB J 2:2939–2949

    Google Scholar 

  • Winters TA, Henner WD, Russell PS et al (1994) Removal of 3′-phosphoglycolate from DNA strand-break damage in an oligonucleotide substrate by recombinant human apurinic/apyrimidinic endonuclease 1. Nucleic Acids Res 22:1866–1873

    Article  PubMed  CAS  Google Scholar 

  • Winters TA, Russell PS, Kohli M et al (1999) Determination of human DNA polymerase utilization for the repair of a model ionizing radiation-induced DNA strand break lesion in a defined vector substrate. Nucleic Acids Res 27:2423–2433

    Article  PubMed  CAS  Google Scholar 

  • Wright HA, Hamm RN, Turner JE, Howell RW, Rao DV, Sastry KSR (1990) Calculations of physical and chemical reactions with DNA in aqueous solution from Auger cascades. Radiat Prot Dosimetry 31:59–62

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Panyutin, I.G., Winters, T.A., Feinendegen, L.E., Neumann, R.D. (2003). Development of DNA-based Radiopharmaceuticals Carrying Auger-Electron Emitters for Anti-gene Radiotherapy. In: Feinendegen, L.E., Shreeve, W.W., Eckelman, W.C., Bahk, YW., Wagner, H.N. (eds) Molecular Nuclear Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55539-8_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55539-8_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62427-8

  • Online ISBN: 978-3-642-55539-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics