Skip to main content

Biomolecular Magnification Imaging of Musculoskeletal Diseases

  • Chapter
Molecular Nuclear Medicine

Abstract

The human musculoskeletal system has four functions: (1) body structuring with weight bearing and protection against extraneous forces, (2) locomotion, (3) calcium storage and liberation, and (4) hematopoiesis. Of these, the structure or anatomy and the molecular profile or metabolism of bone calcium can be imaged using 99mTc methyl diphosphonate (MDP) or hydroxydiphosphonate (HDP), calcium salt analogues, and hematopoiesis can be graphically assessed using 52Fe, 59Fe, 99mTc nanocolloid, and 99mTc-labeled anti-NCA95 antibody. Bones are hardened with calcium salts and, under the influence of calcitonin, bone calcium is mobilized into general circulation to maintain homeostasis. Being closely integrated with other tissues in general calcium metabolism, bone serves as the largest reservoir of calcium in the human body (97%) (Williams et al. 1989). The mobilization of calcium from bone results in decalcification that occurs in various conditions such as immobilization, inflammation, arthritis, osteoporosis, renal osteodystrophy, and reflex sympathetic dystrophy. Actually, live bones are ceaselessly engaged with the deposition and removal of calcium salts in the form of bone production and résorption mediated through the activities of osteoblasts and osteoclasts. Altered calcium metabolism, either local or systemic, can be assessed using radiography, CT, MRI, scintigraphy, and neutron activation analysis. However, bone scintigraphy can uniquely image both anatomy and molecular or metabolic profile at the same time (Holms 1978; Smith 1986; Bahk 2000; Etchebehere et al. 2001). In addition, denatured muscle can also be imaged by 99mTc-MDP or -HDP scan. Bone marrow is the largest hematopoietic organ in the human producing erythropoietic precursor cells, granulocytes, and reticuloendothelial cells. Each of these cells can be separately imaged using appropriate radiopharmaceuticals. Bone marrow scan will be discussed in detail under a separate section. From the view point of molecular nuclear medicine and for the sake of a categorical description, it seems warranted to classify skeletal disorders into two major groups. The first group consists of disorders that are associated with genetic imbalance or heredity and the second group consists of disorders that are mere histopathological entities in nature with no known association with genome problems. Disorders in the first group, clinically by far less common in occurrence than the second group, result from autosomal or sex chromosomal imbalance or mutations. Well known autosomal and chromosomal disorders include Turner syndrome, Klinefelter syndrome, and trisomy defects. Mucopolysaccharidoses and osteochondrodysplasias are other major groups of genetic disorders. The former disorders, caused by genetically determined deficiencies of lysosomal enzymes that degrade mucopo-lysaccharides (McAlister and Herman 1995), include Hurler’s disease, Hunter’s syndrome, and Morquio’s disease and the latter Marfan’s syndrome, osteopetrosis, osteogenesis imperfecta (Goldman 1995), multiple cartilaginous exostoses, and others. Certain skeletal disorders are known to be the result of the action of several different genes and hence referred to as polygenic disorders. Rheumatoid arthritis, ankylosing spondylitis, and Reiter’s syndrome belong to this category. These disorders can be assessed by antigen test, the HLA-B27 antigen in particular (Morris et al. 1974; Kahn 1988), and constitute excellent indications for bone scintigraphy (Kim et al. 1999; Bahk 2000).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alazraki N (1988) Radiopharmaceuticals. In: Resnick D, Niwayama G (eds) Diagnosis of bone and joint disorders, 2nd edn. Saunders, Philadelphia, pp 463–465

    Google Scholar 

  • Amor B, Cherot A, Delbarre et al (1977) Hydroxyapatite rheumatism and HLA markers. J Rheumatol Suppl 3:101–104

    PubMed  CAS  Google Scholar 

  • Baek JH, Lee SY, Kim SH et al (1997) Pinhole bone scintigraphic manifestation of fibrous dysplasia. Korean J Nucl Med 31:452–458

    Google Scholar 

  • Bahk YW (1996) Pinhole scanning in tumors and tumorous conditions of bone: a new imaging approach to skeletal oncology. J Orthop Sci 1:70–89

    Google Scholar 

  • Bahk YW (2000) Combined scintigraphic and radiographic diagnosis of bone and joint diseases. 2nd edn. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Bahk YW, Kim OH, Chung SK (1987) Pinhole collimator scintigraphy in differential diagnosis of metastasis, fracture, and infections of the spine. J Nucl Med 28:447–451

    PubMed  CAS  Google Scholar 

  • Bahk YW, Park YH, Chung SK et al (1995) Bone pathologic correlation of multimodality imaging in Paget’s disease. J Nucl Med 36:421–426

    Google Scholar 

  • Bahk YW, Chung SK, Park YH et al (1998 a) Pinhole SPECT imaging in normal and morbid ankles. J Nucl Med 39:130–139

    PubMed  CAS  Google Scholar 

  • Bahk YW, Kim SH, Chung SK et al (1998b) Dual-head pinhole bone scintigraphy. J Nucl Med 39:1444–1448

    PubMed  CAS  Google Scholar 

  • Bahk YW, Kim SH, Chung SK et al (2000) Pinhole bone scan and pinhole bone SPECT findings of reflex sympathetic dystrophy syndrome. J Nucl Med Proceedings of 47th Annual Meeting No. 1426

    Google Scholar 

  • Becker W (1998) A changing role for bone scintigraphy in oncology: the road from routine imaging screening to patient-based screening. Eur J Nucl Med 25:359–361

    Google Scholar 

  • Block D, Feitsma REIJ, Vermeij P et al (1999) Peptide radiopharmaceuticals in nuclear medicine. Eur J Nucl Med 26:1511–1519

    Google Scholar 

  • Brill DR (1983) Sports nuclear medicine. Bone imaging for lower extremity pain in athletes. Clin Nucl Med 8:101–106

    PubMed  CAS  Google Scholar 

  • Bourgeois P, Thimpson J, Feremans W et al (1992) Bone marrow scintigraphy in lung carcinomas using nanosized colloids: when is it useful and how useful is it? Nucl Med Commun 13:421–428

    PubMed  CAS  Google Scholar 

  • Buchegger F, Schreyer M, Carrel S et al (1984) Monoclonal antibodies identify a CEA cross-reacting antigen of 95 kDa (NCA-95) distinct in antigenicity and tissue distribution from the previously described NCA of 55 kDa. Int J Cancer 33:839–845

    Google Scholar 

  • Capitanio MA, Kirkpatrick JA (1970) Early roentgen observations in acute osteomyelitis. AJR 108:488–496

    CAS  Google Scholar 

  • Choi CW, Chung J-K, Lee DS, Lee MC et al (1995) Development of bone marrow immunoscintigraphy using a 99mTc-labeled anti-NCA-95 monoclonal antibody. Nucl Med Biol 22:117–123

    PubMed  CAS  Google Scholar 

  • Chung J-K, Yeo JS, Lee DS et al (1996) Bone marrow scintigraphy using Technetium 99m-labeled antigranulocyte antibody in hematologie disorders. J Nucl Med 37:978–982

    PubMed  CAS  Google Scholar 

  • Connolly LP, Treves ST, Connolly SA et al (1998) Pediatric skeletal scintigraphy: applications of pinhole magnification. RadioGraphics 18:341–351

    PubMed  CAS  Google Scholar 

  • Conway JJ (1995) Radionuclide evaluation of Legg-CalvéPerthes disease. In: Treves ST (ed) Pediatrie nuclear medicine, 2nd edn. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Cooper M, Miles KA, Wraight EP, Dixon AK (1992) Degenerative disc disease in the lumbar spine: another cause for focally reduced activity on bone marrow scintigraphy. Skel Radiol 21:247–249

    CAS  Google Scholar 

  • Datz FL, Taylor A Jr (1985) The clinical use of radionuclide bone marrow imaging. Semin Nucl Med 15:239–259

    PubMed  CAS  Google Scholar 

  • Davis MA, Jones AG (1976) Comparison of 99mTc labeled phosphate and phosphonate agents for skeletal imaging. Semin Nucl Med 6:19–31

    PubMed  CAS  Google Scholar 

  • Denardo GL, Jacobson SJ, Raventos A (1972) 85Sr bone scan in neoplastic disease. Semin Nucl Med 2:18–30

    PubMed  CAS  Google Scholar 

  • Donohoe KJ, Henkin RE, Rotal HD et al (1998) Procedure guideline for bone scintigraphy: 1.0. J Nucl Med 37:1903–1906

    Google Scholar 

  • Duncker CM, Carrio I, Berna L et al (1990) Radioimmune imaging of bone marrow in patients with suspected bone métastases from primary breast cancer. J Nucl Med 31:1450–1455

    PubMed  CAS  Google Scholar 

  • Duszynski DO, Kuhn JP, Afshani E et al (1975) Early radionuclide diagnosis of acute osteomyelitis. Radiology 117:337–340

    PubMed  CAS  Google Scholar 

  • Edelstyn GA, Gillespie PJ, Grebbell FS (1967) The radiological demonstration of osseous metastasis. Experimental observations. Clin Radiol 18:158–162

    PubMed  CAS  Google Scholar 

  • Etchebehere ECSC, Caron M, Pereira JA et al (2001) Activation of the growth plate on three-phase bone scintigraphy: the explanation for the overgrowth of fractured femurs. Eur J Nucl Med 28:72–80

    PubMed  CAS  Google Scholar 

  • Flickinger FW, Sanal SM (1994) Bone marrow MRI: techniques and accuracy for detecting breast cancer metastasis. Magn Reson Imaging 12:829–835

    PubMed  CAS  Google Scholar 

  • Fogelman I, Carr D (1980) A comparison of bone scanning and radiology in the evaluation of patients with metabolic bone disease. Clin Radiol 31:321–326

    PubMed  CAS  Google Scholar 

  • Francis MD, Ferguson DL, Tofe AJ et al (1980) Comparative evaluation of three diphosphonates: in vivo adsorption (C-14 labelled) and in vivo osteogenic uptake (Tc-99m complexed). J Nucl Med 21:1185–1189

    PubMed  CAS  Google Scholar 

  • Francis MD, Horn PA, Tofe AJ (1981) Controversial mechanism of technetium-99m deposition on bone. J Nucl Med (abstract) 22:72

    Google Scholar 

  • Fugger L, Tisch R, Liblau R et al (1995) The role of human major histocompatibility complex (HLA) genes in disease. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) Metabolic and molecular bases of inherited disease I, 7th edn, chap 9. McGraw-Hill, New York, pp 555–585

    Google Scholar 

  • Gilday DL, Eng B, Paul DJ et al (1975) Diagnosis of osteomyelitis in children by combined blood pool and bone imaging. Radiology 177:331–335

    Google Scholar 

  • Goldman AB (1995) Heritable diseases of connective tissue, epiphyseal dysplasia, and related conditions. In: Resnick D (ed) Diagnosis of bone and joint disorders, 3rd edn. Saunders, Philadelphia

    Google Scholar 

  • Gordon SL, Buchanan J, Lodda RL (1981) Hereditary multiple exostoses: report of a kindred. J Med Genet 18:428–430

    PubMed  CAS  Google Scholar 

  • Groshar D, Rosenbaum M, Rosner I (1997) Enthesopathies, inflammatory spondyloenthesopathies and bone scintigraphy. J Nucl Med 38:2003–2005

    PubMed  CAS  Google Scholar 

  • Guillermart A, Le Page A, Galy YG et al (1980) Bone kinetics of calcium-45 and pyrophosphate labelled with technetium 96. An autoradiographic evaluation. J Nucl Med 21:466–470

    Google Scholar 

  • Harper PV, Lathrop KA, Jiminez F et al (1965) Technetium 99m as a scan agent. Radiology 85:1–9

    Google Scholar 

  • Haubold-Reuter BG, Duewell S, Schilcher BR et al (1993) The value of bone scintigraphy, bone marrow scintigra-phy and fast spinecho magnetic resonance imaging in staging of patients with malignant solid tumors: a prospective study. Eur J Nucl Med 20:1063–1069

    PubMed  CAS  Google Scholar 

  • Higuchi T, Inoue T, Sarwar M et al (1998) Tc-99m-labelled chimeric human/mouse antigranulocyte antibody bone marrow scintigraphy: a preliminary clinical study. Nucl Med Commun 19:463–474

    PubMed  CAS  Google Scholar 

  • Hohmann EL, Eide RP, Rysavy JA et al (1986) Innervation of periosteum and bone by sympathetic vasoactive intestinal polypeptide-containing nerve fibers. Science 232:868–871

    PubMed  CAS  Google Scholar 

  • Holms RA (1978) Quantification of skeletal Tc-99m labelled phosphates to detect metabolic bone disease. J Nucl Med 19:330–331

    Google Scholar 

  • Hotta T, Murate R, Inoue C et al (1990) Patchy haemopoiesis in long-term remission of idiopathic aplastic anemia. Eur J Haematol 45:73–77

    PubMed  CAS  Google Scholar 

  • Hotze AL, Griele B, Ooverbeck B et al (1992) Technetium99m-labeled anti-granulocyte antibodies in suspected bone infections. I Nucl Med 33:526–531

    CAS  Google Scholar 

  • Huda W, Slone R (1995) Screen/film radiography. In: Huda W, Slone R (eds) Review of radiologic physics. Williams and Wilkins, Baltimore

    Google Scholar 

  • Jacobson AF, Fogelman I (1998) Bone scanning in clinical oncology: does it have a future? Eur J Nucl Med 25:1219–1223

    PubMed  CAS  Google Scholar 

  • Jaszczak RJ, Murphy PH, Huard D (1977) Radionuclide emission computed tomography of the head with 99mTc and scintillation camera. J Nucl Med 18:373–380

    PubMed  CAS  Google Scholar 

  • Jones AG, Francis MD, Davis MA (1976) Bone scanning: radionuclide reaction mechanisms. Semin Nucl Med 6:3–18

    PubMed  CAS  Google Scholar 

  • Kahn MA (1988) Ankylosing spondylitis and heterogeneity of HLA-B27. Semin Arthritis Rheum 18:134–141

    Google Scholar 

  • Kamby C, Vejborg I, Daugaard S et al (1987) Clinical and radiological characteristics of bone metastases in breast cancer. Cancer 60:2254–2261

    Google Scholar 

  • Kaufman JH, Cedermark BJ, Parthasarathy KL et al (1977) The value of Ga-67 scintigraphy in soft-tissue sarcoma and chondrosarcoma. Radiology 123:131–134

    PubMed  CAS  Google Scholar 

  • Kim JY, Chung SK, Park et al (1992) Pinhole bone scan appearance of osteoid osteoma. Korean J Nucl Med 26:160–163

    Google Scholar 

  • Kim SH, Chung SK, Bahk YW et al (1999) Whole-body and pinhole bone scintigraphic manifestations of Reiter’s syndrome: distribution patterns and early and characteristic signs. Eur J Nucl Med 26:163–170

    PubMed  CAS  Google Scholar 

  • Kozin F, Soin JS, Ryan LM et al (1981) Bone scintigraphy in the reflex sympathetic dystrophy syndrome. Radiology 138:37–43

    Google Scholar 

  • Kuroki M, Koga Y, Masuoka Y (1984) Monoclonal antibodies to carcinoembryonic antigen: a systematic analysis of antibody specificities by using related normal antigens and evidence for allotypic determinants on carcinoembryonic antigen. J Immunol 133:2090–2097

    PubMed  CAS  Google Scholar 

  • Lee KH, Chung J-K, Choi CW et al (1995) Technetium-99m-labeled antigranulocyte antibody bone marrow scintigraphy. J Nucl Med 36:1800–1805

    PubMed  CAS  Google Scholar 

  • Lee SM, Bae SK, Cho MR (2000) Acute osteomyelitis shown as a cold lesion on bone scan. Korean J Nucl Med 34:516–520

    Google Scholar 

  • Lee SY, Baek JH, Kim SH et al (1998) Metabolic profile of fi-bro-osseous dysplasia using pinhole bone scan. Eur J Nucl Med (abstract)

    Google Scholar 

  • Leirisalo M, Skylv G, Kousa M et al (1982) Followup study on patients with Reiter’s disease and reactive arthritis, with special reference to HLA-B27. Arthritis Rheum 25:249–259

    PubMed  CAS  Google Scholar 

  • Lilien DL, Berger HG, Anderson DP et al (1973) Indium-111-chloride: a new agent for bone marrow imaging. J Nucl Med 14:184–186

    PubMed  CAS  Google Scholar 

  • Mallinckrodt Medical Inc (1996) Technescan HDP kit for the preparation of technetium Tc-99m oxidronate (revised 8/1996). Mallinckrodt Medical Inc, St Louis, Mo

    Google Scholar 

  • Matin P (1983) Bone scintigraphy in the diagnosis and management of traumatic injury. Semin Nucl Med 13:104–122

    PubMed  CAS  Google Scholar 

  • McAfee JG, Gagne G, Subramanian G et al (1991) The localization of indium-lll-leukocytes, gallium-67-polyclonal IgG and other radioactive agents in acute focal inflammatory lesions. J Nucl Med 32:2126–2131

    PubMed  CAS  Google Scholar 

  • McAlister WH, Herman TE (1995) Osteochondrodysplasias, dysostoses, chromosomal aberrations, mucopolysacchari-doses, and mucolipidoses. In: Resnick D, Niwayama G (eds) Diagnosis of bone and joint disorders, 3rd edn. Saunders, Philadelphia

    Google Scholar 

  • McCarty DJ, Gatter RA (1966) Recurrent acute inflammation associated with focal apatite crystal deposition. Arthritis Rheum 9:804–819

    PubMed  Google Scholar 

  • McNeil BJ, Pace PD, Gray EB et al (1978 a) Preoperative and follow-up bone scans in patients with primary carcinoma of the breast. Surg Gynec Obst 147:745–748

    CAS  Google Scholar 

  • McNail BJ (1978 b) Rationale for the use of bone scans in selected metastatic and primary bone tumors. Semin Nucl Med 8:336–345

    Google Scholar 

  • Medina M, Viglietti AL, Gozzeli L et al (2000) Indium-111 labelled white blood cell scintigraphy in cranial and spinal septic lesions. Eur J Nucl Med 27:1473–1480

    PubMed  CAS  Google Scholar 

  • Michel F, Soler M, Inhof E, Perruchound AP (1991) Initial staging of non-small cell lung cancer: value of routine radioisotope bone scanning. Thorax 46:469–473

    PubMed  CAS  Google Scholar 

  • Mills BG, Singer FR (1976) Nuclear inclusions in Paget’s disease of bone. Science 194:201–202

    PubMed  CAS  Google Scholar 

  • Morris R, Metzger AL, Bluestone R et al (1974) HL-A W27 —a clue to the diagnosis and pathogenesis of Reiter’s syndrome. N Engl J Med 290:554–556

    PubMed  CAS  Google Scholar 

  • Mullaji AB, Emery RJH, Joysey VC et al (1993) HLA and slipped capital femoral epiphysis. J Orthop Rheumatol 6:167–169

    Google Scholar 

  • Munz DL (1984) Bone marrow imaging: basic concepts and clinical results. Nuklearmedizin 4:251–268

    Google Scholar 

  • Nadel HR (1993) Thallium-201 for oncological imaging in children. Semin Nucl Med 23:243–254

    PubMed  CAS  Google Scholar 

  • Najean Y, Le Danvic M, Le Mercier N et al (1980) Significance of bone marrow scintigraphy in aplastic anemia: concise communication. J Nucl Med 21:213–218

    PubMed  CAS  Google Scholar 

  • Okarvi SM (1999) Recent developments in Tc-99m-labelled peptide-based radiopharmaceuticals: an overview. Nucl Med Commun 20:1093–1112

    PubMed  CAS  Google Scholar 

  • Padhy AK, Garg A, Kochupilai V et al (1987) Marrow uptake index: a quantitative scintigraphic study of bone marrow in aplastic anemia. Thymus 10:137–146

    PubMed  CAS  Google Scholar 

  • Park HM, Lambertus J (1977) Skeletal and reticuloendothe-lial imaging in osteopetrosis: case report. J Nucl Med 18:1091–1095

    PubMed  CAS  Google Scholar 

  • Pediatric Task Group EANM Member (1990) A radiopharmaceutical schedule for imaging in pediatrics. Eur J Nucl Med 17:127–129

    Google Scholar 

  • Perez DJ, Powles TJ, Milan J et al (1983) Detection of breast carcinoma metastases in bone: relative merits of X-rays and skeletal scintigraphy. Lancet 10:613–657

    Google Scholar 

  • Perkins AC, Pimm MV (1991) Immunoscintigraphy: practical aspects and clinical applications. Wiley-Liss, New York

    Google Scholar 

  • Peters AM (1994) The utility of [99mTc] HMPAO-leukocytes for imaging infection. Semin Nucl Med 14:110–127

    Google Scholar 

  • Pinals RS, Short CL (1965) Calcific periarthritis involving multiple sites. Arthritis Rheum 8:462

    Google Scholar 

  • Pistenma DA, McDougall IR, Kriss JP (1975) Screening for bone metastases. JAMA 255:46–50

    Google Scholar 

  • Pitt WR, Sharp PF (1985) Comparison of quantitative and visual detection of new focal bone lesions. J Nucl Med 26:230–236

    PubMed  CAS  Google Scholar 

  • Reske SN, Karstens JH, Gloeckner MW et al (1989) Radio-immunoimaging of bone marrow. Results in patients with breast cancer and skeletal metastases and patients with malignant melanoma. Lancet 2:299–301

    Google Scholar 

  • Resnick D, Niwayama G (1983) Enthesis and enthesopathy. Radiology 146:1–9

    PubMed  CAS  Google Scholar 

  • Rhodes BA, Zamora PO, Newall KD et al (1986) Techne-tium-99m labeling of murine monoclonal antibody fragments. J Nucl Med 27:685–693

    PubMed  CAS  Google Scholar 

  • Richards P (1960) A survey of the production at Brookha-ven National Laboratory of Radioisotopes for medical research. Comitato Nazionale Ricerche Nucleari, Rome (Congresso nucleare, vol 2)

    Google Scholar 

  • Roger LF (1992) Radiology of skeletal trauma, 3rd edn. Churchill Livingstone, New York

    Google Scholar 

  • Rosenthall L (1987) Synovitis. In: Fogelman I (ed) Bone scanning in clinical practice. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Rosenthall L, Kaye M (1975) Technetium-99m-pyrophos-phate kinetics and imaging in metabolic bone disease. J Nucl Med 16:33–39

    PubMed  CAS  Google Scholar 

  • Rubin P (1964) Dynamic classification of bone dysplasias. Year Book Med Publishers, Chicago

    Google Scholar 

  • Russin LD, Staab EV (1976) Unusual bone-scan findings in acute osteomyelitis: case report. J Nucl Med 17:617–619

    PubMed  CAS  Google Scholar 

  • Schajowicz F (1981) Tumors and tumor-like lesions of bone and joints. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Serafini AN (1976) Pagefs disease of the bone. Semin Nucl Med 6:47–58

    PubMed  CAS  Google Scholar 

  • Shapiro RF, Utsinger PD, Wiesner KB et al (1976) The association of HL-A B27 with Forestiers disease (vertebral ankylosing hyperostosis). J Rheumatol 3:4–8

    PubMed  CAS  Google Scholar 

  • Sly WS, Hu PY (1995) The carbonic anhydrase II deficiency syndrome: osteopetrosis with renal tubular acidosis and cerebral calcification. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) Metabolic and molecular bases of inherited disease III, 7th edn, chap 137. McGraw-Hill, New York, pp 4113–4124

    Google Scholar 

  • Smith ML (1986) Quantitative 99mTc diphosphonate uptake measurements. In: Fogelman I (ed) Bone scanning in clinical practice. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Silverstein EB, Francis MD, Tofe AJ et al (1975) Distribution of 99mTc-Sn-diphosphonate and free 99mTc-pertechnetate in selected soft and hard tissues. J Nucl Med 16:58–61

    Google Scholar 

  • Steinstraesser A, Schorlemmer HU, Schwarz A et al (1988) A novel 99mTc-labeled antibody for in vivo targeting of granulocyte. J Nucl Med 29:925

    Google Scholar 

  • Subramanian G, McAfee JG (1971) A new complex of 99mTc for skeletal imaging. Radiology 99:92–96

    Google Scholar 

  • Suzuki Y, Hisada K, Takeda M (1974) Demonstration of myositis ossificans by 99mTc pyrophosphate bone scanning. Radiology 111:663–664

    PubMed  CAS  Google Scholar 

  • Treves ST, Connolly LP, Kirkpatrick AB et al (1995) Bone. In: Treves ST (ed) Pediatric nuclear medicine, 2nd edn. Springer, New York Berlin Heidelberg

    Google Scholar 

  • Tumeh SS, Beadle G, Kaplan WD (1985) Clinical significance of solitary rib lesions in patients with extraskeletal malignancy. J Nucl Med 26:140–143

    Google Scholar 

  • Waldfogel FA, Vasey H (1980) Osteomyelitis: the past decade. N Engl J Med 303:360–370

    Google Scholar 

  • Werner JA, Botvinick EH, Shames DM et al (1977) Clinical application of technetium-99m stannous pyrophosphate infarct scintigraphy. West J Med 127:464–478

    PubMed  CAS  Google Scholar 

  • Widding A, Stilbo I, Hansen SW et al (1990) Scintigraphy with nanocolloid Tc-99m in patients with small cell lung cancer, with special reference to bone marrow and hepatic metastasis. Eur J Nucl Med 16:717–719

    PubMed  CAS  Google Scholar 

  • Williams PL, Warwick R, Dyson M et al (1989) Gray’s anatomy, 37th edn. Churchill Livingstone, Edinburgh

    Google Scholar 

  • Yang WJ, Bahk YW, Chung SK et al (1994) Pinhole skeletal scintigraphic manifestations of Tietze’s disease. Eur J Nucl Med 21:947–952

    PubMed  CAS  Google Scholar 

  • Yeh KA, Fortunato L, Ridge JA et al (1995) Routine bone scanning in patients with Tl and T2 breast cancer: a waste of money. Ann Surg Oncol 2:319–324

    PubMed  CAS  Google Scholar 

  • Yuasa K, Sugimura K, Okizuka AH et al (1991) Bone infarction and fat island appearing as local defects in radionuclide bone marrow imaging. Kaku Igaku 28:91–96

    PubMed  CAS  Google Scholar 

  • Zwas ST, Elkanovitch R, Frank G (1987) Interpretation and classification of bone scintigraphic findings in stress fractures. J Nucl Med 82:452–457

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bahk, YW., Chung, SK., Chung, JK. (2003). Biomolecular Magnification Imaging of Musculoskeletal Diseases. In: Feinendegen, L.E., Shreeve, W.W., Eckelman, W.C., Bahk, YW., Wagner, H.N. (eds) Molecular Nuclear Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55539-8_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55539-8_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62427-8

  • Online ISBN: 978-3-642-55539-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics