Skip to main content

Monoamine Oxidase: Radiotracer Development and Human Studies

  • Chapter
Book cover Molecular Nuclear Medicine

Abstract

In 1928, Mary Hare isolated a new enzyme which catalyzed the oxidative deamination of tyramine (Hare 1928). She called it tyramine oxidase and speculated that it “may be protective and present for the purpose of rapid detoxification of excessive amounts of tyramine absorbed from the intestine.” Later Blashko and coworkers showed that this same enzyme also oxidized catecholamines (Blaschko et al. 1937). To reflect this more general reactivity, Zeller (1938) proposed the general name monoamine oxidase (MAO). In the years that followed its discovery, MAO was further characterized along with its role in the regulation of chemical neurotransmitters and as a target for therapeutic drugs and toxic substances. More recently its genetics have been studied. This chapter will focus on general aspects of MAO, on the development of radiotracers for imaging MAO A and MAO B, and on PET studies of MAO in the human brain.

Reprinted from Methods, vol. 27, Fowler JS, Logan J, Volkow ND, Wang GJ, MacGregor RR, Ding YS, Monoamine oxidase: radiotracer development and human studies, pp. 263-277, 2002, with permission of Elsevier Science

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abeles RH, Maycock AL (1976) Suicide enzyme inactivators. Accounts Chem Res 9:313–319

    CAS  Google Scholar 

  • Adolfsson R, Gottfries C-G, Oreland L et al (1980) Increased activity of brain and platelet monoamine oxidase in dementia of Alzheimer type. Life Sci 27:1029–1034

    PubMed  CAS  Google Scholar 

  • Alexoff DL, Shea C, Fowler JS et al (1995) Plasma input function determination for PET using a commercial laboratory robot. Nucl Med Biol 22:893–904

    PubMed  CAS  Google Scholar 

  • Ametany SM, Beer HF, Guenther I et al (1996) Radiosynthesis of [11C]brofaromine, a potential tracer for imaging monoamine oxidase A. Nucl Med Biol 23:229–234

    Google Scholar 

  • Anderson MC, Hasan F, McCrodden JM et al (1993) Monoamine oxidase inhibitors and the cheese effect. Neurochem Res 18:1145–1149

    PubMed  CAS  Google Scholar 

  • Ansari KS, Yu PH, Kruck PA et al (1993) Rescue of axotomized immature rat facial motor neurons by R(-)-deprenyl: stereospecificity and independence from monoamine oxidase inhibition. J Neurosci 13:4042–4053

    PubMed  CAS  Google Scholar 

  • Arnett CD, Fowler JS, MacGregor RR et al (1987) Turnover of brain monoamine oxidase measured in vivo by positron emission tomography using L-[11C]deprenyl. J Neurochem 49:522–527

    PubMed  CAS  Google Scholar 

  • Bach AWJ, Lan NC, Johnson DL (1988) CDNA cloning of human liver monoamine oxidase A and B: molecular basis of differences in enzymatic properties. Proc Natl Acad Sci USA 85:4934–4938

    PubMed  CAS  Google Scholar 

  • Bartzokis G, Beckson M, Newton T et al (1999) Selegiline effects on cocaine-induced changes in medial temporal lobe metabolism and subjective ratings of euphoria. Neuropsychopharmacology 20:582–590

    PubMed  CAS  Google Scholar 

  • Beer HF, Frey LD, Haberli M et al (1995 a) [123I/18F]N-(2-aminoethyl)-5-halogeno-2-pyridinecarbox-amides, site specific tracers for MAO B mapping with SPECT and PET. Nucl Med Biol 22:999–1004

    PubMed  CAS  Google Scholar 

  • Beer HF, Rossetti I, Frey LD et al (1995b) 123I-Labeling and evaluation of Ro 43-0463, a SPET tracer for MAO B imaging. Nucl Med Biol 22:929–936

    PubMed  CAS  Google Scholar 

  • Belleau B, Moran J (1963) Deuterium isotope effects in relation to the chemical mechanism of monoamine oxidase. Ann NY Acad Sci 107:822–839

    PubMed  CAS  Google Scholar 

  • Bench CJ, Price GW, Lammertsma AA (1991) Measurement of human cerebral monoamine oxidase type B (MAO B) activity with positron emission tomography (PET): a dose ranging study with the reversible MAO B inhibitor Ro 19-6327. Eur J Clin Pharmacol 40:169–173

    PubMed  CAS  Google Scholar 

  • Bench CJ, Lammertsma AA, Dolan RJ et al (1993) Cerebral monoamine oxidase (MAO B) activity in normal subjects, Alzheimer’s disease and Parkinson’s disease. J Cereb Blood Flow Metab 13:S246

    Google Scholar 

  • Bergstrom M, Westerberg G, Langstrom B (1997 a) 11C-Harmine as a tracer for monoamine oxidase A (MAO A): in vitro and in vivo studies. Nucl Med Biol 24:287–293

    PubMed  CAS  Google Scholar 

  • Bergstrom M, Westerberg G, Kihberg T et al (1997b) Synthesis of some 11-labeled MAO A inhibitors and their in vivo uptake kinetics. Nucl Med Biol 24:381–388

    PubMed  CAS  Google Scholar 

  • Bergstrom M, Westerberg G, Nemeth G et al (1997 c) MAO A inhibition in brain after dosing with esuprone, moclobemide and placebo in healthy volunteers: in vivo studies with positron emission tomography. Eur J Clin Pharmacol 52:121–128

    PubMed  CAS  Google Scholar 

  • Berlin I, Said S, Spreux-Varocuax et al (1995 a) Monoamine oxidase A and B in heavy smokers. Biol Psychiatry 33:756–761

    Google Scholar 

  • Berlin I, Said S, Spreux-Varocuax et al (1995 b) A reversible monoamine oxidase A inhibitor (moclobemide) facilitates smoking cessation and abstinence in heavy, dependent smokers. Clin Pharmacol Ther 58:444–452

    PubMed  CAS  Google Scholar 

  • Bernard S, Fuseau C, Schmid L et al (1996) Synthesis and in vivo studies of a specific monoamine oxidase B inhibitor 5-4-benzyloxy)phenyl-3-(2-cyanoethyl)-l,3,4-oxa-diazo-[nC]-2(3H)-one. Eur J Nucl Med 23:150–156

    PubMed  CAS  Google Scholar 

  • Birkmayer W, Riederer P (1984) Deprenyl prolongs the therapeutic efficacy of combined L-DOPA in Parkinson’s disease. Adv Neurol 40:475–481

    PubMed  CAS  Google Scholar 

  • Blaschko H, Richter D, Schlossmann H (1937) The inactivation of adrenaline. J Physiol (Lond) 90:1–17

    CAS  Google Scholar 

  • Blauenstein P, Remy N, Buck A et al (1998) In vivo properties of N-(2-aminoethyl)-5-halogeno-2-carboxamide 18F-and 1231-labeled inhibitors of monoamine oxidase B. Nucl Med Biol 25:47–52

    PubMed  CAS  Google Scholar 

  • Bodkin JA, Cohen BM, Salomon MS et al (1996) Treatment of negative symptoms in schizophrenia and schizoaffective disorder by selegiline augmentation of antipsychotic medication. A pilot study examining the role of dopamine. J Nerv Ment Dis 184:295–301

    PubMed  CAS  Google Scholar 

  • Brauer LH, Paxton DA, Rose JE (2000) Selegiline and transdermal nicotine for smoking cessation. Presented at the 6th annual meeting of the Society for Research on Nicotine and Tobacco, 18-20 Febr 2000, Arlington, Va

    Google Scholar 

  • Brenner DE, Kukull WA, Van Belle G et al (1993) Relationship between cigarette smoking and Alzheimer’s disease in a population-based case-control study. Neurology 43:293–300

    PubMed  CAS  Google Scholar 

  • Brunner HG, Nelen M, Breakefield XO et al (1993) Abnormal behavior associated with a point mutation in the structural gene for monoamine oxidase A. Science 262:578–580

    PubMed  CAS  Google Scholar 

  • Buck A, Frey LD, Blusenstein P et al (1998) Monoamine oxidase B single photon emission tomography with [123I]Ro 43 0463: imaging in volunteers and patients with temporal lobe epilepsy. Eur J Nucl Med 25:464–470

    PubMed  CAS  Google Scholar 

  • Caldecott-Hazard S, Schneider LS (1992) Clinical and biochemical aspects of depressive disorders: III. Treatment and controversies. Synapse 10:141–168

    PubMed  CAS  Google Scholar 

  • Cases O, Seif I, Grimsby J et al (1995) Aggressive behavior and altered amounts of serotonin and norepinephrine in mice lacking MAO A. Science 268:1763–1766

    PubMed  CAS  Google Scholar 

  • Castagnoli N Jr, Rimoldi JM, Bloomquist J et al (1997) Potential metabolic bioactivation pathways involving cyclic tertiary amines and azarenes. Chem Res Toxicol 10:924–940

    PubMed  CAS  Google Scholar 

  • Cohen G, Kesler N (1999) Monoamine oxidase and mitochondrial respiration. J Neurochem 73:2310–2315

    PubMed  CAS  Google Scholar 

  • Collins FA, Murphey DL, Reiss AL et al (1992) Clinical, biochemical and neuropsychiatric evaluation of a patient with a contiguous gene syndrome due to microdeletion Xp11.3 including the Norrie disease locus and monoamine oxidase (MAO A and MAO B) genes. Am J Med Genet 42:127–134

    PubMed  CAS  Google Scholar 

  • Crane GE (1956) Psychiatric side effects of iproniazide. Am J Psychiatry 112:494–497

    PubMed  CAS  Google Scholar 

  • Curet O, Damoiseau G, Aubin N et al (1996) Befloxatone, a new reversible and selective monoamine oxidase-A inhibitor. I. Biochemical profile. J Pharmacol Exp Ther 277:253–264

    PubMed  CAS  Google Scholar 

  • Curtis-Prior P, Vere D, Fray P (1999) Therapeutic value of Gingko biloba in reducing symptoms of decline in mental function. J Pharm Pharmacol 51:535–541

    PubMed  CAS  Google Scholar 

  • Da Prada M, Kettler R, Keller HH et al (1988) WP, Ro 19-6327, a reversible, highly selective inhibitor of type B monoamine oxidase completely devoid of tyramine potentiating effects: comparison with selegiline. In: Dahl-strom A (ed) Progress in catecholamine research, part B. Central aspects. Liss, New York, pp 359–363

    Google Scholar 

  • Ding Y-S, Fowler JS, Gatley SJ et al (1995) Mechanistic PET studies of 6-[18F]fluorodopamine in living baboon heart: selective imaging and control of radiotracer metabolism using the deuterium isotope effect. J Neurochem 65:682–690

    PubMed  CAS  Google Scholar 

  • Dolle F, Bramoulle Y, Bottlaender M et al (1999) [11C]Befloxatone, a novel highly potent radioligand for in vivo imaging monoamine oxidase A. J Labeled Compounds Radiopharm 42[Suppl l]:S608–S609

    Google Scholar 

  • Fowler CJ, Wiberg A, Oreland L et al (1980) The effect of age on the activity and molecular properties of human brain monoamine oxidase. J Neural Transm 49:1–20

    PubMed  CAS  Google Scholar 

  • Fowler JS, MacGregor RR, Wolf AP et al (1987) Mapping human brain monoamine oxidase A and B with 11C-sui-cide inactivators and positron emission tomography. Science 235:481–485

    PubMed  CAS  Google Scholar 

  • Fowler JS, Wolf AP, MacGregor RR et al (1988) Mechanistic positron emission tomography studies. Demonstration of a deuterium isotope effect in the MAO catalyzed binding of [11C] L-deprenyl in living baboon brain. J Neurochem 51:1524–1534

    PubMed  CAS  Google Scholar 

  • Fowler JS, Volkow ND, Logan J et al (1993) Monoamine oxidase B (MAO B) inhibitor therapy in Parkinson’s disease: the degree and reversibility of human brain MAO B inhibition by Ro 19 6327. Neurology 43:1984–1992

    PubMed  CAS  Google Scholar 

  • Fowler JS, Volkow ND, Logan J et al (1994) Slow recovery of human brain MAO B after L-deprenyl withdrawal. Synapse 18:86–93

    PubMed  CAS  Google Scholar 

  • Fowler JS, Wang G-J, Logan J et al (1995) Selective reduction of radiotracer trapping by deuterium substitution: comparison of [11C]L-deprenyl and [11C]L-deprenyl-D2 for MAO B mapping. J Nucl Med 36:1255–1262

    PubMed  CAS  Google Scholar 

  • Fowler JS, Wang G-J, Volkow ND et al (1996 a) Inhibition of monoamine oxidase B in the brains of smokers. Nature 379:733–736

    PubMed  CAS  Google Scholar 

  • Fowler JS, Volkow ND, Wang G-J et al (1996b) Brain MAO A inhibition in cigarette smokers. Proc Natl Acad Sci USA 93:14065–14069

    PubMed  CAS  Google Scholar 

  • Fowler JS, Fazzini E, Volkow ND (1996 c) Deprenyl and levodopa and Parkinson’s disease progression. Ann Neurol 40:267–268

    PubMed  CAS  Google Scholar 

  • Fowler JS, Volkow ND, Wang G-J et al (1997) Age-related increases in brain MAO B in healthy human subjects. Neurobiol Aging 18:431–435

    PubMed  CAS  Google Scholar 

  • Fowler JS, Volkow ND, Logan J et al (1998) An acute dose of nicotine does not inhibit MAO B in baboon brain in vivo. Life Sci 63PL:19–23

    Google Scholar 

  • Fowler JS, Volkow ND, Cilento R et al (1999 a) Comparison of brain glucose metabolism and monoamine oxidase B (MAO B) in traumatic brain injury. Clin Positron Imaging 2:71–79

    PubMed  Google Scholar 

  • Fowler JS, Wang G-J, Volkow ND et al (1999b) Smoking a single cigarette does not produce a measurable reduction in brain MAO B in non-smokers. Nicotine Tob Res 1:325–329

    PubMed  CAS  Google Scholar 

  • Fowler JS, Wang G-J, Volkow ND et al (2000 a) Evidence that Ginkgo biloba extract does not inhibit MAO A and B in the human brain. Life Sci 66 PL:141–146

    Google Scholar 

  • Fowler JS, Logan J, Gimi R et al (2000 b) Non-MAO A binding of clorgyline in white matter in human brain. J Neurochem 79:1039–1046

    Google Scholar 

  • Fowler JS, Wang G-J, Volkow ND et al (2000 c) Maintenance of brain monoamine oxidase B inhibition in smokers after overnight cigarette abstinence. Am J Psychiatry 157:1864–1866

    PubMed  CAS  Google Scholar 

  • Fowler JS, Volkow ND, Logan J et al (2001a) Evidence that L-deprenyl treatment for one week does not inhibit MAO A or the dopamine transporter in the human brain. Life Sci 68:2759–2768

    PubMed  CAS  Google Scholar 

  • Fowler JS, Ding Y-S, Logan J et al (2001b) Species differences in [11C]clorgyline binding in brain. Nucl Med Biol 28:779–785

    PubMed  CAS  Google Scholar 

  • Fowler JS, Logan J, Wand GJ et al (2002) PET imaging of monoamine oxidase B in peripheral organs in humans. J Nucl Med 43:1331–1338

    PubMed  CAS  Google Scholar 

  • Galva MD, Bondiolotti GP, Olasma M et al (1995) Effect of aging on lazabemide binding, monoamine oxidase activity and monoamine metabolites in human frontal cortex. J Neural Transm [Gen Sect] 101:83–94

    CAS  Google Scholar 

  • George TP, Vessicchio JC, Termine A et al (2003) A preliminary placebo-controlled trial of selegiline hydrochlor-ide for smoking cessation. Biol Psychiatry 53:136–143

    PubMed  CAS  Google Scholar 

  • Gerlach M, Riederer P, Youdim MB (1992) The molecular pharmacology of L-deprenyl. Eur J Pharmacol 226:97–108

    PubMed  CAS  Google Scholar 

  • Glassman AH, Heizer JE, Covey LS et al (1990) Smoking, smoking cessation, and major depression. JAMA 264:1546–1549

    PubMed  CAS  Google Scholar 

  • Goller L, Bergstrom M, Nilsson S et al (1995) MAO-A enzyme binding in bladder cancer characterized with [11C]harmine in frozen section autoradiography. Oncol Rep 2:717–721

    PubMed  CAS  Google Scholar 

  • Gorell JM, Rybicki BA, Johnson CC et al (1999) Smoking and Parkinson’s disease—a dose-response relationship. Neurology 52:115–119

    PubMed  CAS  Google Scholar 

  • Grimsby J, Toth M, Karoum F et al (1997) Increased stress response and-phenylethylamine in MAO B-deficient mice. Nat Genet 17:206–210

    PubMed  CAS  Google Scholar 

  • Halldin C, Burling P, Stalnacke C-G et al (1989) 11C-Labeling of dimethylphenethylamine in two different positions and biodistribution studies. Appl Radiat Isot 40:557–560

    CAS  Google Scholar 

  • Hare MLC (1928) Tyramine oxidase. I. A new enzyme system in liver. Biochem J 22:968–979

    PubMed  CAS  Google Scholar 

  • Hashimoto K, Inoue O, Suzuki K et al (1986) Deuterium isotope effect and [11C]N,N-dimethylphenethyl-amine-a,a-d2: reduction in metabolic trapping rate in brain. Nucl Med Biol 13:79–80

    CAS  Google Scholar 

  • Heikkila RE, Manzino L, Cabbat FS et al (1984) Protection against the dopaminergic neurotoxicity of l-methyl-4-phenyl-l,2,5,6-tetrahydropyridine by monoamine oxidase inhibitors. Nature:467–469

    Google Scholar 

  • Henningfield JE, Clayton R, Pollen W (1990) Involvement of tobacco in alcoholism and illicit drug use. Br J Addict 85:279–292

    PubMed  CAS  Google Scholar 

  • Hirata M, Magata Y, Ohmomo Y et al (1995) Evaluation of radioiodinated iododorgyline as a SPECT radiopharma-ceutical for MAO-A in the brain. Nucl Med Biol 22:175–180

    PubMed  CAS  Google Scholar 

  • Hughes JR, Hatsukami DK, Mitchell JE et al (1986) Prevalence of smoking among psychiatric outpatients. Am J Psychiatry 143:993–997

    PubMed  CAS  Google Scholar 

  • Inoue O, Tominaga T, Yamasaki T (1985) Radioactive N,N-dimethylphenethylamine: a selective radiotracer for the in vivo measurement of monoamine oxidase B activity in the brain. J Neurochem 44:210–216

    PubMed  CAS  Google Scholar 

  • Inoue H, Castagnoli K, Van Der Schyf C et al (1999) Species-dependent differences in monoamine oxidase A and B-catalyzed oxidation of various C4 substituted 1-methyl-4-phenyl-l,2,3,6-tetrahydropyridinyl derivatives. J Pharm Exp Ther 291:856–864

    CAS  Google Scholar 

  • Ishiwata K, Ido T, Yanai K et al (1985) Biodistribution of a positron emitting suicide inactivator of monoamine oxidase, carbon-11 pargyline, in mice and a rabbit. J Nucl Med 26:630–636

    PubMed  CAS  Google Scholar 

  • Johnston JP (1968) Some observations upon a new inhibitor of monoamine oxidase in brain tissue. Biochem Pharmacol 17:1285–1297

    PubMed  CAS  Google Scholar 

  • Khalil AA, Steyn S, Castagnoli N (2000) Isolation and characterization of a monoamine oxidase inhibitor from tobacco leaves. Chemical research. Toxicology 13:31–35

    CAS  Google Scholar 

  • Kleijnen J, Knipschild P (1992) Ginkgo biloba. Lancet 340:1136–1139

    PubMed  CAS  Google Scholar 

  • Knoll J, Magyar K (1972) Some puzzling effects of monoamine oxidase inhibitors. Adv Biochem Psychopharmacol 5:393–408

    PubMed  CAS  Google Scholar 

  • Koller WC, Giron LT (1990) Selegiline HC1: selective MAO-type B inhibitor. Neurology 40[Suppl 3]:58–60

    PubMed  Google Scholar 

  • Kopin I (1993) Monoamine oxidase (MAO). Relationship to foods, poisons, and medicines. Biogenic Amines 9:355–365

    CAS  Google Scholar 

  • Kumlien E, Hilton-Brown P, Spannare B, Gillberg P-G et al (1992) In vitro quantitative autoradiography of [3H]L-Deprenyl nd [3H]-Pk 11195 binding sites in human epileptic hippocampus. Epilepsia 33:610–617

    PubMed  CAS  Google Scholar 

  • Kumlien E, Bergstrom M, Lilja A et al (1995) Positron emission tomography with [11C]deuterium-deprenyl in temporal lobe epilepsy. Epilepsia 36:712–721

    PubMed  CAS  Google Scholar 

  • Lamensdorf I, Youdim MBH, Finberg JPM (1996) Effect of long-term treatment with selective monoamine oxidase A and B inhibitors on dopamine release from rat striatum in vivo. J Neurochem 67:1532–1539

    PubMed  CAS  Google Scholar 

  • Lammertsma AA, Bench CJ, Price GW et al (1991) Measurement of cerebral monoamine oxidase B activity using L-[11C]deprenyl and dynamic positron emission tomography. J Cereb Blood Flow Metab 11:545–556

    PubMed  CAS  Google Scholar 

  • Langston JW, Ballard JW, Tetrud JW et al (1983) Chronic parkinsonism in humans due to a product of meperidine analog synthesis. Science 219:979–980

    PubMed  CAS  Google Scholar 

  • Langston JW, Irwin I, Langston EB et al (1984) Pargyline prevents MPTP-induced parkinsonism in primates. Science 225:1480–1483

    PubMed  CAS  Google Scholar 

  • Lena I, Ombetta J-I, Chalon S et al (1995) Iododerivative of pargyline: a potential tracer for the exploration of monoamine oxidase sites by SPECT. Nucl Med Biol 22:727–736

    PubMed  CAS  Google Scholar 

  • Lidberg L, Modin I, Oreland L et al (1985) Platelet monoamine oxidase activity and psychopathy. Psychiatry Res 4:339–343

    Google Scholar 

  • Logan J, Dewey SL, Wolf AP et al (1991) Effects of endogenous dopamine on measures of [18F]N-methylspiroperidol binding in the basal ganglia: comparison of simulations and experimental results from PET studies in baboons. Synapse 9:195–207

    PubMed  CAS  Google Scholar 

  • Logan J, Fowler JS, Volkow ND et al (2000) Reproducibility of repeated measures of deuterium substituted [nC]L-de-prenyl ([11C]L-deprenyl-D2) binding in the human brain. Nucl Med Biol 27:43–49

    PubMed  CAS  Google Scholar 

  • MacGregor RR, Halldin C, Fowler JS et al (1985) Selective, irreversible in vivo binding of [11C]clorgyline and [11C]L-deprenyl in mice: potential for the measurement of monoamine oxidase activity in brain using positron emission tomography. Biochem Pharmacol 34:3207–3210

    PubMed  CAS  Google Scholar 

  • MacGregor RR, Fowler JS, Wolf AP (1988) Synthesis of suicide inhibitors of monoamine oxidase: carbon-11 labeled clorgyline, L-deprenyl and D-deprenyl. J Labeled Compounds Radiopharm 25:1–9

    CAS  Google Scholar 

  • Mannelli M, Pupilli C, Lanzillotti R et al (1990) Catechola-mines and blood pressure regulation. Horm Res 34:156–160

    PubMed  CAS  Google Scholar 

  • Maycock AL, Abeles RH, Salach JI et al (1976) The structure of the covalent adduct formed by the interaction of 3-dimethylamine-1-propyne and the flavine of mitochondrial amine oxidase. Biochemistry 15:114–125

    PubMed  CAS  Google Scholar 

  • Morens DM, Grandinetti A, Reed D et al (1995) Cigarette smoking and protection from Parkinson’s disease: false association or etiological clue. Neurology 45:1041–1051

    PubMed  CAS  Google Scholar 

  • Mukherjee J, Yang Z-Y (1999) Development of N-[3-(2′,4′-dichlorophenoxy)-2-18F-ftuoropropyl]-N-methylpropargy-lamine (18F-fluorodorgyline) as a potential PET radiotracer for monoamine oxidase A. Nucl Med Biol 26:619–625

    PubMed  CAS  Google Scholar 

  • Nakamura S, Kawamata T, Akiguchi I et al (1990) Expression of monoamine oxidase B inactivity in astrocytes of senile plaques. Acta Neuropathol (Berl) 80:419–425

    CAS  Google Scholar 

  • Norman TR, Chamberlain KG, French MA (1987) Platelet monoamine oxidase: low activity in cigarette smokers. Psychiatry Res 20:199–205

    PubMed  CAS  Google Scholar 

  • Oreland L (1991) Monoamine oxidase dopamine and Parkinson’s disease. Acta Neurol Scand 84[Suppl 136]:60–65

    Google Scholar 

  • Oreland L, Fowler CJ, Schalling D (1981) Low platelet monoamine oxidase activity in cigarette smokers. Life Sci 29:2511–2518

    PubMed  CAS  Google Scholar 

  • Palmer AM, DeKosky ST (1993) Monoamine neurons in aging and Alzheimer’s disease. J Neural Transm [Gen Sect] 91:135–159

    CAS  Google Scholar 

  • Parkinson’s Study Group (1989) Effect of deprenyl on the progression of disability in early Parkinson’s disease. N Engl J Med 321:1364–1371

    Google Scholar 

  • Parkinson’s Study Group (1996) Effect of lazabemide on the progression of disability in early Parkinson’s disease. Ann Neurol 40:99–107

    Google Scholar 

  • Patlak C, Fenstermacher JD, Blasberg RG (1983) Graphical evaluation of blood-to-brain transfer constants from multiple time-activity data. J Cereb Blood Flow Metab 3:1–7

    PubMed  CAS  Google Scholar 

  • Plenevaux A, Dewey SL, Fowler JS et al (1990) Synthesis of (R)-(-)-and (S)-(+)-4-fluorodeprenyl and R-(-)-and (S)-(+)-[N-11C-methyl]-4-fluorodeprenyl and positron emission tomography studies in baboon brain. J Med Chem 33:2015–2019

    PubMed  CAS  Google Scholar 

  • Porsolt RD, Roux S, Drieu K (2000) Evaluation of Ginkgo biloba extract (Egb 761) in functional tests for monoamine oxidase inhibition. Arzneimittelforschung/Drug Res 50:232–235

    CAS  Google Scholar 

  • Raffel DM, Corbett JR, del Rosario RB et al (1999) Sensitivity of [nC]phenylephrine kinetics to monoamine oxidase activity in normal human heart. J Nucl Med 40:232–238

    PubMed  CAS  Google Scholar 

  • Rafi H, Chalon S, Ombetta JE et al (1996) An iodinated derivative of moclobemide as potential radioligand for brain MAO A exploration. Life Sci 58:1159–1169

    Google Scholar 

  • Reinikainen KJ, Paljarvi L, Halonen T et al (1988) Dopami-nergic system and monoamine oxidase B activity in Alzheimer’s disease. Neurobiol Aging 9:245–252

    PubMed  CAS  Google Scholar 

  • Richards JG, Saura J, Luque JM et al (1998) Monoamine oxidases: from brain maps to physiology and transgenics to pathophysiology. J Neural Transm [Suppl] 52:173–187

    CAS  Google Scholar 

  • Riederer P, Youdim MBH (1986) Monoamine oxidase activity and monoamine metabolism in brains of parkinson-ian patients treated with L-deprenyl. J Neurochem 46:1359–1365

    PubMed  CAS  Google Scholar 

  • Robinson DS, Davis JM, Nies A et al (1971) Relation of sex and aging to monoamine oxidase activity of human brain, plasma and platelets. Arch Gen Psychiatry 24:536–539

    PubMed  CAS  Google Scholar 

  • Robinson JB (1985) Stereoselectivity and isoenzyme selectivity of monoamine oxidase inhibitors. Enantiomers of amphetamine, N-methylamphetamine and deprenyl. Bio-chem Pharmacol 34:4105–4108

    CAS  Google Scholar 

  • Sano M, Ernesto C, Thomas RG et al (1997) A controlled trial of selegiline, alpha tocopherol or both as the treatment of Alzheimer’s disease. N Engl J Med 336:1216–1222

    PubMed  CAS  Google Scholar 

  • Saura J, Kettler R, Da Prada M et al (1992) Quantitative enzyme radioautography with 3H-Ro 411049 and 3H-Ro 196327 in vitro: localization and abundance of MAO-A and MAO-B in rat CNS, peripheral organs, and human brain. J Neurosci 12:1977–1999

    PubMed  CAS  Google Scholar 

  • Saura J, Richards JG, Mahy N (1994 a) Differential age-related changes of MAO-A and MAO-B in mouse brain and peripheral organs. Neurobiol Aging 15:399–408

    PubMed  CAS  Google Scholar 

  • Saura J, Luque AM, Cesura M et al (1994b) Increased monoamine oxidase B activity in plaque-associated astrocytes f Alzheimer brains revealed by quantitative enzyme radioautography. Neuroscience 62:15–30

    PubMed  CAS  Google Scholar 

  • Saura J, Nadal E, van den Berg B et al (1996) Localization of monoamine oxidases in human peripheral tissues. Life Sci 59:1341–1349

    PubMed  CAS  Google Scholar 

  • Schildkraut JJ (1965) The catecholamine hypothesis of affective disorders: a review of supporting evidence. Am J Psychiatry 122:509–522

    PubMed  CAS  Google Scholar 

  • Scremin OU, Holschneider DP, Chem K et al (1999) Cerebral cortical blood flow maps are reorganized in MAOB-deficient mice. Brain Res 824:36–44

    PubMed  CAS  Google Scholar 

  • Selikoff I, Robitzek E, Ornstein G (1952) Treatment of pulmonary tuberculosis with hydrazide derivatives of isonicotinic acid. JAMA 150:973–980

    CAS  Google Scholar 

  • Shih JC, Chen K, Ridd MJ (1999) Monoamine oxidase: from genes to behavior. Ann Rev Neurosci 22:197–217

    PubMed  CAS  Google Scholar 

  • Shinotoh H, Inoue O, Suzuki K et al (1987) Kinetics of [11C]N,N-dimethylphenethylamine in mice and humans: potential for measurement of brain MAO B activity. J Nucl Med 28:1006–1011

    PubMed  CAS  Google Scholar 

  • Simpson GM, Shih JC, Chen K et al (1999) Schizophrenia, monoamine oxidase and cigarette smoking. Neuropsy-chopharmacology 20:392–394

    CAS  Google Scholar 

  • Singer T (1995) Monoamine oxidases: old friends hold many surprises. FASEB J 9:605–610

    PubMed  CAS  Google Scholar 

  • Strolin-Benedetti M, Dostert P (1989) Monoamine oxidase, brain ageing and degenerative diseases. Biochem Pharmacol 38:555–561

    PubMed  CAS  Google Scholar 

  • Strolin-Benedetti MS, Tipton KF (1998) Monoamine oxidases and related amine oxidases as phase I enzymes in the metabolism of xenobiotics. J Neural Transm [Suppl] 52:149–171

    CAS  Google Scholar 

  • Terry RD, DeTeresa R, Hansen LA (1987) Neocortical cell counts in normal human adult aging. Ann Neurol 21:530–539

    PubMed  CAS  Google Scholar 

  • Tetrud JW, Langston JW (1989) The effect of deprenyl (selegiline) on the natural history of Parkinson’s disease. Science 245:519–522

    PubMed  CAS  Google Scholar 

  • Tominaga T, Inoue O, Suzuki K et al (1987) [13N]β-phenethylamine ([13N]PEA): a prototype tracer for measurement of MAO B activity in heart. Biochem Pharmacol 36:3671–3675

    PubMed  CAS  Google Scholar 

  • Ulus IH, Maher TJ, Wurtman RJ (2000) Characterization of phentermine and related compounds as monoamine oxidase (MAO) inhibitors. Biochem Pharmacol 59:1611–1621

    PubMed  CAS  Google Scholar 

  • Walsh C (1982) Suicide substrates: mechanism based enzyme inactivators. Tetrahedron 38:871–909

    CAS  Google Scholar 

  • Westlund KN, Denney RM, Rose RM et al (1988) Localization of distinct monoamine oxidase A and monoamine oxidase B cell populations in human brainstem. Neuroscience 25:439–456

    PubMed  CAS  Google Scholar 

  • White HL, Scates PW, Cooper BR (1996) Extracts of Ginkgo biloba leaves inhibit monoamine oxidase. Life Sci 58:1315–1321

    PubMed  CAS  Google Scholar 

  • Youdim MDH, Riederer P (1993) Dopamine metabolism and neurotransmission in primate brain in relationship to monoamine oxidase A and B inhibition. J Neural Transm 91:181–195

    CAS  Google Scholar 

  • Zeller EA (1938) Enzymatic degradation of histamine and diamines. Helv Chim Acta 21:880–890

    CAS  Google Scholar 

  • Zeller EA, Barsky J, Berman ER (1955) Amine oxidases. XL Inhibition of monoamine oxidase by l-isonicotinyl-2-isopropylhydrazine. J Biol Chem 214:267–274

    PubMed  CAS  Google Scholar 

  • Zhuang Z, Hogan M, McCauley R (1988) The in vitro insertion of monoamine oxidase B into mitochondrial outer membranes. FEBS Lett 238:185–190

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fowler, J.S., Logan, J., Volkow, N.D., Wang, GJ., MacGregor, R.R., Ding, YS. (2003). Monoamine Oxidase: Radiotracer Development and Human Studies. In: Feinendegen, L.E., Shreeve, W.W., Eckelman, W.C., Bahk, YW., Wagner, H.N. (eds) Molecular Nuclear Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55539-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55539-8_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62427-8

  • Online ISBN: 978-3-642-55539-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics