Skip to main content

Imaging of Cerebral Metabolism in Huntington’s Disease

  • Chapter
Molecular Nuclear Medicine
  • 261 Accesses

Abstract

Huntington’s disease (HD) is a hereditary autosomally-dominant transmitted neurodegenerative disease. Clinically, HD is characterized by a hyperkinetic movement disorder, the so-called chorea, and progressive cognitive deterioration, i.e., dementia. Furthermore, HD may also lead to psychiatric symptoms such as depression, delinquency, alcoholism, or schizophreniform psychosis. These manifestations can precede the onset of chorea by several years and represent a considerable burden to the patient and his family. Woody Guthrie, the famous American musician, was affected by HD; the fatal consequences of this disease on his life and that of his family have been described in his biographies (Klein 1980).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andrews TC, Weeks RA, Turjanski N et al (1999) Huntington’s disease progression. PET and clinical observations. Brain 122:2353–2363

    Article  PubMed  Google Scholar 

  • Araujo DM, Cheney SR, Tatsukawa KJ et al (2000) Deficits in striatal dopamine D-2 receptors and energy metabolism detected by in vivo MicroPET imaging in a rat model of Huntington’s disease. Exp Neurol 166:287–297

    Article  PubMed  CAS  Google Scholar 

  • Aylward EH, Brandt J, Codori AM et al (1994) Reduced basal ganglia volume associated with the gene of Huntington’s disease in asymptomatic at-risk persons. Neurology 44:823–828

    Article  PubMed  CAS  Google Scholar 

  • Beal MF (2000) Energetics in the pathogenesis of neurode-generative diseases. Trends Neurosci 23:298–304

    Article  PubMed  CAS  Google Scholar 

  • Beal MF, Hantraye P (2001) Novel therapies in the search for a cure for Huntington’s disease. Proc Natl Acad Sci USA 98:3–4

    Article  PubMed  CAS  Google Scholar 

  • Burke JR, Enghild JJ, Martin ME et al (1996) Huntingtin and DRPLA proteins selectively interact with the enzyme GAPDH. Nat Med 2:347–350

    Article  PubMed  CAS  Google Scholar 

  • Dezutter NA, Dom RJ, de Groot TJ et al (1999) 99mTc-MAMA-chrysamine G, a probe for beta-amyloid protein of Alzheimer’s disease. Eur J Nucl Med 26:1392–1399

    Article  PubMed  CAS  Google Scholar 

  • Grafton ST, Maziotta JC, Pahl JJ et al (1990) A comparison of neurological, metabolic, structural, and genetic evaluation in persons at risk of Huntingtons disease. Ann Neurol 28:614–621

    Article  PubMed  CAS  Google Scholar 

  • Hayden MR, Martin WR, Stoessl AJ et al (1986) Positron emission tomography in the early diagnosis of Huntington’s disease. Neurology 36:888–894

    Article  PubMed  CAS  Google Scholar 

  • Huntington G (1872) On chorea. Med Surg Rep 26:317–321

    Google Scholar 

  • Klein J (1980) Woody Guthrie: a life. Ballantine Books, New York

    Google Scholar 

  • Koroshetz WJ, Jenkins BG, Rosen BR et al (1997) Energy metabolism defects in Huntington’s disease and effects of coenzyme Q10. Ann Neurol 41:160–165

    Article  PubMed  CAS  Google Scholar 

  • Kuhl DE, Phelps ME, Markham CH et al (1982) Cerebral metabolism and atrophy in Huntington’s disease determined by 18FDG and computed tomographic scan. Ann Neurol 12:425–434

    Article  PubMed  CAS  Google Scholar 

  • Kunig G, Leenders KL, Sanchez-Pernaute R et al (2000) Benzodiazepine receptor binding in Huntington’s disease: [HC]flumazenil uptake measured using positron emission tomography. Ann Neurol 47:644–648

    Article  PubMed  CAS  Google Scholar 

  • Kuwert T, Lange HW, Langen KJ et al (1990) Cortical and subcortical glucose consumption measured by PET in patients with Huntington’s disease. Brain 113:1405–1423

    Article  PubMed  Google Scholar 

  • Kuwert T, Lange HW, Boecker H et al (1993) Striatal glucose consumption in chorea-free subjects at risk of Huntington’s disease. J Neurol 241:31–36

    Article  PubMed  CAS  Google Scholar 

  • Kuwert T, Bartenstein P, Grünwald F et al (1998) Clinical significance of positron emission tomography in neuro-medicine. A position paper on the results of an interdisciplinary consensus conference. Nervenarzt 69:1045–1060

    Article  PubMed  CAS  Google Scholar 

  • Lange HW (1976) Morphometric studies of the neuropathological changes in choreatic diseases. J Neurol Sci 28:401–425

    Article  PubMed  CAS  Google Scholar 

  • Leenders KL, Frackowiack RS, Quinn N et al (1986) Brain energy metabolism and dopaminergic function in Huntington’s disease measured in vivo using positron emission tomography. Mov Dis 1:69–77

    Article  CAS  Google Scholar 

  • Ludolph AC, Seelig M, Ludolph AG et al (1992) ATP deficits and neuronal degeneration induced by 3-Nitropropionic acid. Ann NY Acad Sci 11:300–302

    Article  Google Scholar 

  • Mazziotta JC, Phelps ME, Pahl JJ et al (1987) Reduced cerebral glucose metabolism in asymptomatic subjects at risk for Huntington’s disease. N Engl J Med 316:357–362

    Article  PubMed  CAS  Google Scholar 

  • McGowan DP, van Roon-Mom W, Holloway H et al (2000) Amyloid-like inclusions in Huntington’s disease. Neuroscience 100:677–680

    Article  PubMed  CAS  Google Scholar 

  • Paulson HL, Fishbeck KH (1996) Trinucleotide repeats in neurogenetic disorders. Annu Rev Neurosci 19:79–107

    Article  PubMed  CAS  Google Scholar 

  • Phelps ME (2000) PET: the merging of biology and imaging into molecular imaging. J Nucl Med 41:661–681

    PubMed  CAS  Google Scholar 

  • Schlaug A, Hefter H, Engelbrecht V et al (1996) Neurological impairment and recovery in Wilson’s disease: evidence from PET and MRI. J Neurol Sci 136:129–139

    Article  PubMed  CAS  Google Scholar 

  • Tabrizi SJ, Cleeter MW, Xuereb J et al (1999) Biochemical abnormalities and excitotoxicity in Huntington’s disease brain. Ann Neurol 45:25–32

    Article  PubMed  CAS  Google Scholar 

  • The Huntington’s Disease Collaborative Research Group (1993) A novel gene containing a trinudeotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72:971–983

    Article  Google Scholar 

  • Tobin AJ, Signer ER (2000) Huntington’s disease: the challenge for cell biologists. Trends Cell Biol 10:531–536

    Article  PubMed  CAS  Google Scholar 

  • Trottier Y, Bianclana V, Mandel JL et al (1994) Instability of CAG repeats in Huntington’s disease: relation to parental transmission and age of onset. J Med Genet 31:377–382

    Article  PubMed  CAS  Google Scholar 

  • Vonsattel JP, Myers RH, Stevens TJ et al (1985) Neuropathological classification of Huntington’s disease. J Neuropathol Exp Neurol 44:559–577

    Article  PubMed  CAS  Google Scholar 

  • Wexler A (1996) Mapping fate—a memoir of family, risk, and genetic research. Random House, Times Books, New York

    Google Scholar 

  • Zeron MM, Chen N, Moshaver A et al (2001) Mutant huntingtin enhances excitotoxic cell death. Mol Cell Neurosci 17:41–53

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kuwert, T. (2003). Imaging of Cerebral Metabolism in Huntington’s Disease. In: Feinendegen, L.E., Shreeve, W.W., Eckelman, W.C., Bahk, YW., Wagner, H.N. (eds) Molecular Nuclear Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55539-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55539-8_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62427-8

  • Online ISBN: 978-3-642-55539-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics