Skip to main content

Measurements of Biochemical Reactions In Vivo

  • Chapter
  • 264 Accesses

Abstract

Immense progress has been made over the last century in medical diagnosis, especially in the techniques of radiological imaging. The evolution began in the mid-18908 by the epochal discoveries of Röntgen and Becquerel (Blaufox 1996). The initial limitation of radiology to observing externally radio-opaque structures such as bones in the living body rapidly evolved into functional imaging of organs such as kidney and liver and the circulatory system using radio-opaque contrast agents. With the advent of computed tomography soft tissues also became visible in high-resolution images, augmenting the spectrum of function studies of organ segments. Yet, the molecular-atomic level of biological organization in living tissues became observable only with the introduction of the radionuclide tracer technique by (1913). Further studies with radioactive and stable isotopes of common elements in organic compounds (C, H, O, N, S, P) in the 1930s and 1940s revealed the surprising extent to which both “functional” and “structural” compounds in the body are ceaselessly formed and broken down, even with no change in overall amount, form, or function (Schoenheimer 1946; Hevesy 1948). Today, the specialty of nuclear medicine is indispensable in clinical diagnosis and therapy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Antar MA, Spohr G, Herzog HH et al (1986) 15-(ortho-123-I-phenyl)-pentadecanoic acid, a new myocardial imaging agent for clinical use. Nucl Med Commun 7:683–696

    PubMed  CAS  Google Scholar 

  • Armbrecht JJ, Buxton DB, Schelbert HR (1990) Validation of [1-11-C]acetate as a tracer for noninvasive assessment of oxidative metabolism with positron emission tomography in normal, ischemic, postischemic, and hyperemic canine myocardium. Circulation 81:1594–1605

    Article  PubMed  CAS  Google Scholar 

  • Ballare E, Persana L, Lania AG et al (2001) Mutation of so-matostatin receptor type 5 in an acromegalic patient resistant to somatostatin analog treatment. J Clin Endocrinol Metab 86:3809–3814

    Article  PubMed  CAS  Google Scholar 

  • Beckurts TE, Shreeve WW, Schieren R et al (1985) Kinetics of different 123I-and 14C-labeled fatty acids in normal and diabetic rat myocardium in vivo. Nuclear Med Commun 6:415–424

    Article  CAS  Google Scholar 

  • Bengel FM, Permanetter B, Ungerer M et al (2002) Alterations of the sympathetic nervous system and metabolic performance of the cardiomyopathic heart. Eur J Nucl Med Mol Imaging 29:198–202

    Article  PubMed  CAS  Google Scholar 

  • Blaufox MD (1996) Becquerel and the discovery of radioactivity: early concepts. Semin Nucl Med XXVI:145–154

    Google Scholar 

  • Boerman OC, Oyen WJG, Corstens FHM (2000) Radio-labeled receptor-binding peptides: a new class of radio-pharmaceuticals. Semin Nucl Med 30:195–208

    Article  PubMed  CAS  Google Scholar 

  • Brown MA, Marshall DR, Sobel BE et al (1987) Delineation of myocardial oxygen utilization with carbon-11 labeled acetate. Circulation 76:687–696

    Article  PubMed  CAS  Google Scholar 

  • DeGrazia JA, Ivanovich P, Fellows H et al (1965) A double isotope method for measurement of intestinal absorption of calcium in man. J Lab Clin Med 66:822–829

    PubMed  CAS  Google Scholar 

  • Delbeke D, Martin WH, Patton JA, Sandler M (eds) (2002) Practical FDG imaging, a teaching file. Springer, Berlin Heidelberg New York

    Google Scholar 

  • De Meutter RC, Shreeve WW (1963) Conversion of DL-lac-tate-2-C14 or 3-C14 or pyruvate-2-C14 to blood glucose in humans: effects of diabetes, insulin, tolbutamide and glucose load. J Clin Invest 42:525–533

    Article  Google Scholar 

  • Ebert A, Feinendegen DL, Czech N et al (1993) Erfassung des Lipidstoffwechsels und der hepatozellulären Viabilität mittels 15-(para-123-J-Phenyl)-Pentadecansäure (pPPA) und 15-(ortho-131-J-Phenyl)-Pentadecansäure (oPPA) (abstract). Nuklearmedizin 32a:105

    Google Scholar 

  • Feinendegen LE (1993) Single photon metabolic imaging in cardiology. In: Zaret BL, Beller GA (eds) Nuclear cardiology, state of the art and future directions, chap 24. Mos-by Year Book, St Louis, Mo

    Google Scholar 

  • Feinendegen LE (2000) Myocardial imaging of lipid metabolism with labeled fatty acids. In: Dilsizian V (ed) Myocardial viability: a clinical and scientific treatise, chap 16. Futura, Armonk NY

    Google Scholar 

  • Feinendegen LE, Ritzl F (1971) Insulin metabolism determination in vivo using iodine-125 and chromium-51 double labeling. Nucl Med (Stuttg) 9:748–751

    Google Scholar 

  • Feinendegen LE, Heiniger HJ, Friedrich G et al (1973) Differences in reutilization of thymidine in hemopoietic and lymphopoietic tissues of the normal mouse. Cell Tissue Kinet 6:573–585

    PubMed  CAS  Google Scholar 

  • Feinendegen LE, Vyska K, Freundlieb C et al (1981) Non-invasive analysis of metabolic reactions in body tissues, the case of myocardial fatty acids. Eur J Nucl Med 6:191–200

    Article  PubMed  CAS  Google Scholar 

  • Feinendegen LE, Henrich MM, Kuikka JT et al (1995) Myocardial lipid turnover in dilated cardiomyopathy: a dual in vivo tracer approach. J Nucl Cardiol 2:42–52

    Article  PubMed  CAS  Google Scholar 

  • Feinendegen DL, Ohlenschlaeger U, Grossmann K et al (1996) Lipid metabolism in the liver studied in vivo with two isomers of labeled fatty acid analogs. J Nucl Med 37:1841–1845

    PubMed  CAS  Google Scholar 

  • Feinendegen LE, Herzog H, Thompson KH (2001) Cerebral glucose transport implies individualized glial cell function. J Cereb Blood Flow Metab 21:1160–1170

    Article  PubMed  CAS  Google Scholar 

  • Firnau G, Garnett ES, Chan PK et al (1976) Intracerebral dopamine metabolism studied by a novel radioisotope technique. J Pharm Pharmacol 28:584–585

    Article  PubMed  CAS  Google Scholar 

  • Fowler JS, Wolf AP, MacGregor RR et al (1988) Mechanistic positron emission tomography studies: demonstration of a deuterium isotope effect in the monoamine oxidase-catalyzed binding of C-11-deprenyl in living baboon brain. J Neurochem 51:1524–1534

    Article  PubMed  CAS  Google Scholar 

  • Freundlieb C, Hoeck A, Vyska K et al (1978) Use of ω-123-I-labeled heptadecanoic acids for non-invasively measuring myocardial metabolism. In: Woldring M, Schmidt HAE (eds) Proceedings of the 15th international meeting of the Society of Nuclear Medicine, Groningen, 1977. Schattauer, Stuttgart, pp 216–219

    Google Scholar 

  • Freundlieb C, Hoeck A, Vyska K et al (1980) Myocardial imaging and metabolic studies with (17-123-I) iodohep-tadecanoic acid. J Nucl Med 21:1943–1950

    Google Scholar 

  • Friedrich G, Feinendegen LE, Heiniger HJ (1972) Studies on the incorporation of exogenic DNA in mammalian cells. Hoppe Seylers Z Physiol Chem 353:705–706

    PubMed  CAS  Google Scholar 

  • Gallagher BM, Ansari A, Atkins H et al (1977) Radiopharma-ceuticals XXVII. 18F-labeled 2-deoxy-2-fluoro-d-glucose as a radiopharmaceutical for measuring regional myocardial glucose metabolism in vivo: tissue distribution and imaging studies in animals. J Nucl Med 18:990–996

    PubMed  CAS  Google Scholar 

  • Gjedde A, Diemer NH (1983) Kinetic analysis of the uptake of glucose and some of its analogs in the brain using the single capillary model: comments on some points of controversy. In: Lambrecht RM, Rescigno A (eds) Lecture notes in biomathematics 48: Tracer kinetics and physiological modeling. Springer, Berlin Heidelberg New York, pp 387–410

    Google Scholar 

  • Gruvberger S, Ringner M, Chen Y et al (2001) Estrogen receptor status in breast cancer is associated with remarkably distinct gene expression patterns. J Cancer Res 61:5979–5984

    CAS  Google Scholar 

  • Herzog H, Lele VR, Kuwert T et al (1990/1991) Changed pattern of regional glucose metabolism during yoga meditative relaxation. Neuropsychobiology 23:182–187

    Article  PubMed  CAS  Google Scholar 

  • Hevesy G (1913) Radioelements as indicators in chemistry and physics. Chem News 108:166–167

    Google Scholar 

  • Hevesy G (1948) Radioactive indicators. Interscience, New York

    Google Scholar 

  • Hoeck A, Spohr G, Schmitz M et al (1986) 17-iodine-123 iodoheptadecanoic acid for metabolic liver studies in humans. J Nucl Med 27:1533–1539

    Google Scholar 

  • Kaiser KP, Geuting B, Grossmann K et al (1990) Tracer kinetics of 15-(ortho-123-/131-I-phenyl)-pentadecanoic acid (oPPA) and 15-(para-123/131-I-phenyl)-pentadecanoic acid (pPPA) in animals and man. J Nucl Med 31:1608–1616

    PubMed  CAS  Google Scholar 

  • Kallie RN, Shreeve WW, Joubert SM (1968) Studies in primary hyperuricaemia III. The conversion of 14C to 14CO2 from glucose-1-14C and glucose-6-14C in hyperuricaemia and gout. S African Med J 42:473–476

    CAS  Google Scholar 

  • Kelly DP, Mendelsohn NJ, Sobel BE et al (1993) Detection and assessment by positron emission tomography of a genetically determined defect in myocardial fatty acid utilization (long-chain acyl-Co-A dehydrogenase deficiency). Am J Cardiol 71:738–744

    Article  PubMed  CAS  Google Scholar 

  • Knapp FF Jr, Kropp J (1995) Iodine-123-labeled fatty acids for myocardial single photon emission tomography: Current status and future perspectives. Eur J Nucl Med 22:361–381

    Article  PubMed  CAS  Google Scholar 

  • Kim EE, Yang DJ (eds) (2001) Targeted molecular imaging in oncology. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Landau BR, Chandramouli V, Schumann WC et al (1995) Estimates of Krebs cycle activity and contributions of gluconeogenesis to hepatic glucose production in fasting health subjects and IDDM patients. Diabetologia 38:831–838

    Article  PubMed  CAS  Google Scholar 

  • Laruelle M (2000) Imaging synaptic neurotransmission with in vivo binding competition techniques: a critical review. J Cereb Blood Flow Metab 20:423–451

    Article  PubMed  CAS  Google Scholar 

  • Logan J, Fowler JD, Volkow ND et al (1990) Graphical analysis of reversible radioligand binding from time-activity measurements applied to [N-11C-methyl]-(-)cocaine PET studies in human subjects. J Cereb Blood Flow Metab 10:740–747

    Article  PubMed  CAS  Google Scholar 

  • Machulla H-J, Stoecklin G, Kupfernagel CH et al (1978) Comparative evaluation of fatty acids labeled with C-11, Cl-34m, Br-77, and I-123 for metabolic studies of the myocardium: concise communication. J Nucl Med 19:298–302

    PubMed  CAS  Google Scholar 

  • Machulla H-J, Marsmann M, Dutschka K et al (1980) Biochemical concept and synthesis of a radioiodinated phenylfatty acid for in vivo metabolic studies of the myocardium. Eur J Nucl Med 5:171–173

    Article  PubMed  CAS  Google Scholar 

  • Maher BA (2001) Researchers focus on histone code. Scientist 15:15–16

    Google Scholar 

  • Meyers DK, Feinendegen LE (1975a) Incorporation of thymidine and iododeoxyuridine into the DNA of mouse tissues. Can J Physiol Pharmacol 53:1014–1022

    Article  Google Scholar 

  • Meyers DK, Feinendegen LE (1975b) Double labeling with [3H]thymidine and [125I]iododeoxyuridine as a method for determining the fate of injected DNA and cells in vivo. J Cell Biol 67:484–488

    Article  Google Scholar 

  • Meyers DK, Feinendegen LE (1976) DNA turnover and thy-midine re-utilization in mouse tissues. Cell Tissue Kinet 9:215–221

    Google Scholar 

  • Nyhan WL (1984) Nonketotic hyperglycinemia. In: Nyhan WL (ed) Abnormalities in amino acid metabolism in clinical medicine, chap 34. Appleton-Century-Croft, New York, pp 333–351

    Google Scholar 

  • O’Brien KO, Zaveleta N, Caulfield LE et al (1999) Influence of prenatal iron and zinc supplements on supplemental iron absorption, red blood cell incorporation, and iron status in pregnant Peruvian women. Am J Clin Nutr 69:509–515

    PubMed  Google Scholar 

  • Patlak CS, Blasberg RG, Fenstermacher JD (1983) Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab 3:1–7

    Article  PubMed  CAS  Google Scholar 

  • Phelps ME, Huang SC, Hoffman EJ et al (1979) Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18) 2-fluoro-2-deoxy-D-glucose: validation of method. Ann Neurol 6:371–388

    Article  PubMed  CAS  Google Scholar 

  • Rader DJ, Schaefer JR, Lohse P et al (1993) Increased production of apolipoprotein A-l associated with elevated plasma levels of high-density lipoproteins, apolipoprotein A-l and lipoprotein Al in a patient with hyperal-phalipoproteinemia. Metab Clin Exp 42:1429–1434

    Article  PubMed  CAS  Google Scholar 

  • Reivich M, Kuhl D, Wolf A et al (1979) The (18F)fluorodeox-yglucose method for the measurement of local cerebral glucose utilization in man. Circ Res 44:117–127

    Article  Google Scholar 

  • Rensberger B (1996) Life itself: exploring the realm of the living cell. Oxford University Press, Oxford

    Google Scholar 

  • Ritzl F, Feinendegen LE (1971) In vivo determination of site and rate of insulin catabolism using the double tracer technique with 51-Cr and 131-I. In: Dynamic studies with radioisotopes in medicine. Proceedings of the Symposium on Dynamic Studies with Radioisotopes in Clinical Medicine and Research. International Atomic Energy Agency, Vienna, Austria, pp 57–68

    Google Scholar 

  • Ritzl F, Feinendegen LE, Schnippering HG (1974) A double isotope technique for estimating insulin degradation in vivo. Nucl Med (Stuttg) 13:85–97

    CAS  Google Scholar 

  • Ritz P, Coward WA (1995) Doubly labeled water measurement of total energy expenditure. Diabetes Metab 21:241–251

    CAS  Google Scholar 

  • Rodwell VW (1996) Enzymes: kinetics. In: Murray RK, Granner DK, Mayes PA et al (eds) Harper’s biochemistry, 24th edn, chap 9. Appleton and Lange, Stamford, Conn, pp 75–90

    Google Scholar 

  • Sasaki Y (1995) Carbon-14 and Carbon-13 breath tests. In: Wagner HN Jr, Szabo Z, Buchanan JW (eds) Principles of nuclear medicine, 2nd edn, chap 40. Saunders, Philadelphia, pp 958–965

    Google Scholar 

  • Schelbert HR, Henze E, Sochor H et al (1986) Effects of substrate availability on myocardial C-11 palmitate kinetics by positron emission tomography in normal subjects and patients with ventricular dysfunction. Am Heart J 111:1055–1064

    Article  PubMed  CAS  Google Scholar 

  • Schoenheimer R (1946) The dynamic state of body constituents. Harvard University Press, Cambridge, Mass, pp 1–78

    Google Scholar 

  • Schroeder H, Schelbert HR (2000) Positron emission tomography for the assessment of myocardial viability: nonin-vasive approach to cardiac pathophysiology. In: Dilsizian V (ed) Myocardial viability: a clinical and scientific treatise, chap 17. Futura, Armonk, NY

    Google Scholar 

  • Schultze B, Gregoire F, Hughes WL (1964) Renal uptake of pancreatic ribonuclease after intravenous injection in mice and rats. Technical Report, Brookhaven National Laboratory, Upton, NY, BNL-8683

    Google Scholar 

  • Shapiro B, Gross MD, Sisson JS (1995) Neural crest tumors. In: Wagner HN Jr, Szabo Z, Buchanan JW (eds) Principles of nuclear medicine, 2nd edn, chap 33. Saunders, Philadelphia, pp 665–680

    Google Scholar 

  • Shreeve WW, Cerasi E, Luft R (1970) Metabolism of (2-14C) pyruvate in normal, acromegalic and growth hormone-treated human subjects. Acta Endocrinol 65:155–169

    PubMed  CAS  Google Scholar 

  • Shreeve WW, Tashjian AJ, Oji N et al (1971) Formation of 14CO2 and 3H0H from glucose-1-14C-1-3H during oral cortisone glucose tolerance tests in obese patients. Metab Clin Exp 20:280–292

    Article  PubMed  CAS  Google Scholar 

  • Shreeve WW, Schieren R, Machulla HJ et al (1984) Hepatic uptake and fate of 123I-and 14C-fatty acids in normal and ethanolic mice. Nucl Med Commun 5:519–524

    Article  PubMed  CAS  Google Scholar 

  • Silverman DHS, Hoe CK, Seltzer MA et al (1998) Evaluating tumor biology and oncological disease with positron-emission tomography. Semin Rad Oncol 8:183–196

    Article  CAS  Google Scholar 

  • Smith SM, Wastney ME, Nyquist LE et al (1996) Calcium kinetics with microgram stable isotope doses and saliva sampling. J Mass Spectrom (CMB) 31:1265–1270

    Article  CAS  Google Scholar 

  • Sokoloff L, Reivich M, Kenney C et al (1977) The [14C]deoxyglucose method for the measurement of focal cerebral glucose utilization: theory, procedure and normal values in the conscious and anesthetized albino rat. J Neurochem 28:897–916

    Article  PubMed  CAS  Google Scholar 

  • Stern MP (2000) Strategies and prospects for finding insulin resistance genes. J Clin Invest 106:323–327

    Article  PubMed  CAS  Google Scholar 

  • Stryer L (1995) Enzymes: basic concepts and kinetics. In: Stryer L, Biochemistry, 4th edn, chap 8. Freeman, New York, pp 181–206

    Google Scholar 

  • Syrota A, Merlet P, Delforge J (1995) The heart: clinical neu-rotransmission. In: Wagner HN Jr, Szabo Z, Buchanan JW (eds) Principles of nuclear medicine, 2nd edn, chap 37, sect 2. Saunders, Philadelphia, pp 759–773

    Google Scholar 

  • Taylor SI (1995) Diabetes mellitus. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease I, 7th edn, chap 21. McGraw-Hill, NY, pp 843–896

    Google Scholar 

  • Van Eenige MJ, Visser FC, Duwel CMB et al (1987) Analysis of myocardial time activity curves of I-123-heptadecanoic acid I. Curve fitting. Nucl Med 26:241–247

    Google Scholar 

  • Wagner HN Jr (1995) Nuclear medicine: what it is, what it does. In: Wagner HN Jr, Szabo Z, Buchanan JW (eds) Principles of nuclear medicine, 2nd edn, chap 1. Saunders, Philadelphia, pp 1–8

    Google Scholar 

  • Wagner HN, Burns HD, Dannais RF et al (1983) Imaging dopamine receptors in the human brain by positron tomography. Science 221:1264–1266

    Article  PubMed  CAS  Google Scholar 

  • Wagner HN Jr, Szabo Z, Buchanan JW (eds) (1995) Principles of nuclear medicine, 2nd edn. Saunders, Philadelphia

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Feinendegen, L.E., Shreeve, W.W., Wagner, H.N. (2003). Measurements of Biochemical Reactions In Vivo. In: Feinendegen, L.E., Shreeve, W.W., Eckelman, W.C., Bahk, YW., Wagner, H.N. (eds) Molecular Nuclear Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55539-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55539-8_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62427-8

  • Online ISBN: 978-3-642-55539-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics