Skip to main content

Electrokinetic Phenomena Revisited: A Lattice—Boltzmann Approach

  • Conference paper
Computer Simulation Studies in Condensed-Matter Physics XV

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 90))

  • 189 Accesses

Abstract

The Lattice-Boltzmann method (LBM) is an efficient tool to solve the Navier-Stokes equations. Based on this method we have developed a scheme to investigate electrokinetic phenomena in charged colloidal suspensions. The equations of motion that are solved are the so-called electrokinetic equations, i.e. a set of partial differential equations that couple the gradient of the electrostatic potential to the hydrodynamic flow by means of a mean field theory. These equations have been extensively used to study electroviscous phenomena for the limit of a weakly charged sphere in an unbounded electrolyte. We demonstrate that our method can be applied beyond these limit. As an example we discuss the sedimentation of an array of charged spheres

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P.N. Pusey, in: Liquids, Freezing and the Glass Transition. Eds.: J.P. Hansen, D. Levesque and J. Zinn-Justin, Les Houches. Session LI, 1989 (North-Holland, Amsterdam 1991)

    Google Scholar 

  2. A.K. Arora and B.V.R. Tata: Adv. Coll. Int. Sci. 78, 49 (1998)

    Article  Google Scholar 

  3. H. Löwen: J. Phys.: Condens. Matter 13, R415 (2001)

    Article  Google Scholar 

  4. G. Nägele: Phys. Rep. 272, 215 (1996)

    Article  ADS  Google Scholar 

  5. S. Succi: The Lattice Boltzmann Equation for Fluid Dynamics and Beyond (Clarendon Press, Oxford 2001)

    MATH  Google Scholar 

  6. A.J.C. Ladd: Phys. Rev. Lett. 70, 1339 (1993)

    Article  ADS  Google Scholar 

  7. M.H.J. Hagen, D. Frenkel, and C.P. Lowe: J. Chem. Phys. 109, 275 (1998)

    Article  ADS  Google Scholar 

  8. M.H.J. Hagen, D. Frenkel, and C.P. Lowe: Physica A 272, 376 (1999)

    Article  ADS  Google Scholar 

  9. C.P. Lowe, D. Frenkel, and A.J. Masters: J. Chem. Phys. 103, (1995)

    Google Scholar 

  10. M.H.J. Hagen, I. Pagonabarraga, C.P. Lowe, and D. Frenkel: Phys. Rev. Lett. 78, 3785 (1997)

    Article  ADS  Google Scholar 

  11. I. Pagonabarraga, M.H.J. Hagen, C.P. Lowe, and D. Frenkel: Phys. Rev. E 58, 7288 (1998)

    Article  ADS  Google Scholar 

  12. I. Pagonabarraga, M.H.J. Hagen, C.P. Lowe, and D. Frenkel: Phys. Rev. E 59, 4458 (1999)

    Article  ADS  Google Scholar 

  13. U. Oxaal, E.G. Flekkoy, and J. Feder: Phys. Rev. Lett. 72, 3514 (1994)

    Article  ADS  Google Scholar 

  14. A. Koponen, D. Kandhai, E. Hellen, M. Alava, A. Hoekstra, M. Kataja, K. Niskanen, P. Sloot, and J. Timonen: Phys. Rev. Lett. 80, 716 (1998)

    Article  ADS  Google Scholar 

  15. C.P. Lowe and D. Frenkel: Phys. Rev. Lett. 77, 4552 (1996)

    Article  ADS  Google Scholar 

  16. D.L. Koch, R.J. Hill, and A.S. Sangani: Phys. Fluids 10, 3035 (1998)

    Article  ADS  Google Scholar 

  17. P. Ahlrichs and B. Dünweg: J. Chem. Phys. 111, 8225 (1999)

    Article  ADS  Google Scholar 

  18. P. Ahlrichs, R. Everaers, and B. Dünweg: Phys. Rev. E 64, 040501 (2001)

    Article  ADS  Google Scholar 

  19. P.B. Warren: Int. J. Mod. Phys. C 8, 889 (1997)

    Article  ADS  Google Scholar 

  20. J. Horbach and D. Frenkel: Phys. Rev. E 64, 061607 (2001)

    ADS  Google Scholar 

  21. A.J.C. Ladd: J. Fluid Mech. 271, 285 (1994); 271, 311 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery: Numerical recipes. (Cambridge University Press, Cambridge 1992)

    Google Scholar 

  23. G.K. Batchelor: An introduction to fluid dynamics. (Cambridge University Press, Cambridge 2000)

    Book  Google Scholar 

  24. F. Booth: J. Chem. Phys. 22, 1956 (1954)

    Article  ADS  Google Scholar 

  25. H. Ohshima, T.W. Healy, L.R. White, and R.W. O’Brien: J. Chem. Soc., Faraday Trans. 2, 80, 1299 (1984)

    Google Scholar 

  26. H. Hasimoto: J. Fluid Mech. 5, 317 (1957)

    Article  MathSciNet  ADS  Google Scholar 

  27. M. Evers, N. Garbow, D. Hessinger, and T. Palberg: Phys. Rev. E 57, 6774 (1998)

    Article  ADS  Google Scholar 

  28. M. Kollmann and G. Nägele: Europhys. Lett. 52, 474 (2000); M. Kollmann and G. Nagele: J. Chem. Phys. 113, 7672 (2000)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Horbach, J. (2003). Electrokinetic Phenomena Revisited: A Lattice—Boltzmann Approach. In: Landau, D.P., Lewis, S.P., Schüttler, HB. (eds) Computer Simulation Studies in Condensed-Matter Physics XV. Springer Proceedings in Physics, vol 90. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55522-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55522-0_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62423-0

  • Online ISBN: 978-3-642-55522-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics