Skip to main content

Sponge-Associated Bacteria: General Overview and Special Aspects of Bacteria Associated with Halichondria panicea

  • Chapter
Sponges (Porifera)

Part of the book series: Progress in Molecular and Subcellular Biology ((MMB,volume 37))

Abstract

Increasing evidence is accumulating that highlights the important role of bacteria in bacteria—sponge associations. It appears to be equally important to analyse the specific association of bacteria with sponges, to realise the biological function of biologically active substances produced by sponge-associated bacteria, and to consider the relationship between bacteria and sponges in the search for new pharmaceutical products. In this chapter the current knowledge on bacteria—sponge associations is briefly reviewed. Results are summarised that were obtained by three major methodological approaches: (1) classical microscope observations, (2) investigations attempting to characterise sponge-associated bacteria by describing pure culture isolates, and (3) the rapidly growing evidence from genetic analyses of sponge-associated bacteria. Special emphasis is given to the evidence of possible symbiotic interactions between bacteria and sponges and to the synthesis of natural products by bacteria isolated from or associated with marine sponges. Case studies including morphological and genetic studies together with results from pure culture studies have been performed with bacteria from the sponges Rhodopaloeides odorabile, Aplysina cavernicola, and Halichondria panicea. In addition, new results on bacteria associated with Halichondria panicea are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Althoff K, Schütt C, Steffen R, Batel B, Müller WEG (1998) Evidence for symbiosis between bacteria of the genus Rhodobacter and the marine sponge Halichondria panicea: harbor also for putatively toxic bacteria? Mar Biol 130:529–536

    Article  Google Scholar 

  • Berthold RJ, Borowitzka MA, Mackay MA (1982) The ultrastructure of Oscillatoria spongeliae, the blue-green algal endosymbiont of the sponge Dysidea herbacea. Phycologia 21:327–335

    Article  Google Scholar 

  • Bewley CA, Holland ND, Faulkner DJ (1996) Two classes of metabolites from Theonella swinhoei are localized in distinct populations of bacterial symbionts. Experientia 52:716–722

    Article  PubMed  CAS  Google Scholar 

  • Bultel-Poncé V, Debitus C, Blond A, Cerceau C, Guyot M (1998) Lutoside:an acyl-1-(acyl-6’-mannobiosyl)-3-glycerol isolated from the sponge-associated bacterium Micrococcus luteus. Tetrahedron Lett 38:5805–5808

    Article  Google Scholar 

  • Bultel-Poncé V, Berge JP, Debitus C, Nicolas JL, Guyot M (1999) Metabolites from the sponge-associated bacterium Pseudomonas species. J Mar Biotechnol 1:384–390

    Article  Google Scholar 

  • Burja AM, Webster NS, Murphy PT, Hill RT (1999) Microbial symbionts of Great Barrier Reef sponges. Mem Queensland Mus 44:63–75

    Google Scholar 

  • Carballeira N, Thompson JE, Ayanoglu E, Djerassi C (1986) Biosynthetic studies of marine lipids. 5. The biosynthesis of long-chain branched fatty acids in marine sponges. J Org Chem 51:2751–2756

    Article  CAS  Google Scholar 

  • Cheshire AC, Wilkinson CR (1991) Modelling the photosynthetic production by sponges on Davies Reef, Great Barrier Reef. Mar Biol 109:13–18.

    Google Scholar 

  • Davidson SK, Allen SW, Lim GE, Anderson CM, Haygood MG (2001) Evidence for the biosynthesis of bryostatin by the bacterial symbiont “Candidatus Endobugula sertula” of the bryozoan Bugula neritina. Appl Environ Mivrobiol 67:4531–4537

    Article  CAS  Google Scholar 

  • Debitus C, Guella G, Mancini II, Waikedre J, Guemas JP, Nicolas JL, Pietra F (1998) Quinolones from a bacterium and tyrosine metabolites from its host sponge, Suberea creba, from the Coral Sea. J Mar Biotechnol 6:136–141

    PubMed  CAS  Google Scholar 

  • De Vos L, Rützler K, Boury-Esnault N, Donadey C, Vacelet J (1995) Atlas of sponge morphology. Smithsonian Institution Press, Washington

    Google Scholar 

  • Dosse G (1939) Bakterien und Pilzbefunde sowie pathologische und Fäulnisvorgänge in Meeres-und Süβwasserschwämmen. Untersuchungen im Zusammenhang mit dem gegenwärtigen Sterben der Badeschwamme in Westindien. Z Parasitkde 11:331–356

    Article  Google Scholar 

  • Eimhjellen KA (1967) Photosynthetic bacteria and carotenoids from a sea sponge Halichondrium panicea. Acta Chem Scand 21:2280–2281

    Article  CAS  Google Scholar 

  • Elyakov GB, Kuznetsova, T, Mikhailov VV, Maltsev II, Voinov VG, Fedoreyev H (1991) Brominated diphenyl ethers from a marine bacterium associated with the sponge Dysidea sp. Experienta 47:632–633

    Article  CAS  Google Scholar 

  • Faulkner DJ (2001) Marine natural products. Nat Prod Rep 18:1–49

    Article  PubMed  CAS  Google Scholar 

  • Flowers AE, Garson MJ, Webb RI, Dumdei EJ, Charan RD (1998) Cellular origin of chlorinated diketopiperazines in the dictyoceratid sponge Dysidea herbacea (Keller). Cell Tissue Res 292:597–607

    Article  PubMed  CAS  Google Scholar 

  • Friedrich AB, Merker H, Fendert T, Hacker J, Proksch P, Hentschel U (1999) Microbial diversity in the marine sponge Aplysina cavernicula (formerly Verongia cavernicola) analyzed by fluorescence in situ hybridization (FISH). Mar Biol 134:461–470

    Article  Google Scholar 

  • Friedrich AB, Fischer I, Proksch P, Hacker J, Hentschel U (2001) Temporal variation of the microbial community associated with the Mediterranean sponge Aplysina aerophoba. FEMS Microbiol Ecol 38:105–113

    Article  CAS  Google Scholar 

  • Hanh S, Wai-kwan L, Wu J, Silva CJ, Djerassi C (1989) Unusual pattern of fatty acid biosynthesis — evidence for C-19 desaturase activity in fresh water sponges. J Biol Chem264:21043–21046

    Google Scholar 

  • Hentschel I, Schmid M, Wagner M, Fieseler L, Gernert C, Hacker J (2001) Isolation and phylogenetic analysis of bacteria with antimicrobial activities from the Mediterranean sponges Aplysina aerophoba and Aplysina cavernicola. FEMS Microbiol Ecol 35:305–312

    Article  PubMed  CAS  Google Scholar 

  • Hinde R, Pironet F, Borowitzka MA (1994) Isolation of Oscillatoria spongeliaey the filamentous cyanobacterial symbiont of the marine sponge Dysidea herbacea. Mar Biol 119:99–104

    Article  Google Scholar 

  • Hwang DF, Arakawa O, Sato T, Noguchi T, Simidu U, Tsukamoto K, Shida Y, Hashimoto K (1989) Tetrodoxin producing bacteria from the blue-ringed octopus Octopus maculosus. Mar Biol 100:327–332

    Article  CAS  Google Scholar 

  • Imamura N, Nishijima M, Adachi K, Sano H (1993) Novel antimycin antibiotics, Urauchimycins A and B, produced by marine actinomycete. J Antibiot 46:241–246

    Article  PubMed  CAS  Google Scholar 

  • Imhoff JF, Trüper HG (1976) Marine sponges as habitats of anaerobic phototrophic bacteria. Microb Ecol 3:1–9

    Article  Google Scholar 

  • Jakowska S, Nigrelli RF (1960) Antimicrobial substances from sponges. Ann NY Acad Sci 90:913–916

    Article  PubMed  CAS  Google Scholar 

  • Jayatilake GS, Thornton MP, Leonard AC, Grimwade JE, Baker BJ (1996) Metabolites from an Antarctic sponge-associated bacterium, Pseudomonas aeruginosa. J Nat Prod 59:293–296

    Google Scholar 

  • Kaneda T (1991) Iso-and anteiso-fatty acids in bacteria: biosynthesis, function and taxonomic significance. Microbiol Rev 55:288–302

    Google Scholar 

  • Kaye HR (1991) Sexual reproduction in four Caribbean commercial sponges. II. Oogenesis and transfer of bacterial symbionts. Invert Reprod Dev 19:13–24

    Article  Google Scholar 

  • Lee MJ, Jeong DY, Kim WS, Kim HD, Kim CH, Park WW, Park YH, Kim KS, Kim HM, Kim DS (2000) A tetrodoxin producing Vibrio strain LM-1 from the puffer fish Fugu vermicularis radiatus. Appl Environ Microbiol 66:1698–1701

    Article  PubMed  CAS  Google Scholar 

  • Madri PP, Hermel M, Claus G (1971) The microbial flora of the sponge Microciona prolifera Verrill and its ecological implications. Bot Mar 14:1–5

    Article  Google Scholar 

  • McClintock JB, Baker BJ (1997) A review of the chemical ecology of shallow-water Antarctic marine invertebrates. Am Zool 37:329–347

    CAS  Google Scholar 

  • Munro MHG, Leibrand RT, Blunt JW (1987) The search for antiviral and anticancer compounds from marine organisms. In: Scheuer PJ (ed) Bioorganic marine chemistry 1. Springer, Berlin Heidelberg New York, pp 93–176

    Chapter  Google Scholar 

  • Munro MH, Blunt JW, Dumdei EJ, Hickford SJ, Lill RE, Li S, Battershill CN, Duchworth AR (1999) The discovery and development of marine compounds with pharmaceutical potential. J Biotechnol 70:15–25

    Article  PubMed  CAS  Google Scholar 

  • Murakami Y, Oshima Y, Yasouoto T (1982) Identification of okadaic acid as a toxic component of a marine dinoflagellate Prorocentrum lima. Nippon Suisan Gakk 48:69–72

    Article  CAS  Google Scholar 

  • Nordby H, Nemec S, Nagy S (1981) Fatty acids and sterols associated with citrus root mycorrhizae. J Agric Food Chem 29:396–401

    Google Scholar 

  • Oclarit JM, Okada H, Ohta S, Kaminura K, Yamaoka Y, Iizuka T, Miyashiro S, Ikegami S (1994) Anti-bacillus substance in the marine sponge, Hyatella species, produced by an associated Vibrio species bacterium. Microbios 78:7–16

    PubMed  CAS  Google Scholar 

  • Perovic S, Wichels A, Schütt C, Gerdts G, Pahler S, Steffen R, Müller WEG (1998) Neuroactive compounds produced by bacteria from the marine sponge Halichondria panicea: activation of the neuronal NMDA receptor. Environ Toxicol Pharmacol 6:125–133

    Article  PubMed  CAS  Google Scholar 

  • Preston CM, Wu KY, Molinski TF, DeLong EF (1996) A psychrophilic crenarchaeon inhabits a marine sponge: Crenarchaeum symbiosum gen. nov., sp. nov. Proc Natl Acad Sci USA 93:6241–6246

    Article  PubMed  CAS  Google Scholar 

  • Reiswig H (1971) In situ pumping activities of tropical Demospongiae. Mar Biol 9:38–50

    Article  Google Scholar 

  • Reiswig H (1975) Bacteria as food for temperate-water marine sponges. Can J Zool 53:582–589

    Article  Google Scholar 

  • Santavy DL (1985) The symbiontic relationship between a blue-pigmented bacterium and the coral reef sponge, Terpios granulosa. In: Harmelin Vivien M, Salvat B (eds) Proc Fifth Int Coral Reef Congress, Tahiti, vol 5. Antenne Museum Ephe, Moorea, Tahiti, pp 135–140

    Google Scholar 

  • Santavy DL, Colwell RR (1990) Comparison of bacterial communities associated with the Caribbean sclerosponge Ceratoporella nicholsoni and ambient seawater. Mar Ecol Prog Ser 67:73–82

    Article  Google Scholar 

  • Santavy DL, Willenz P, Colwell RR (1990) Phenotypic study of the microbial symbionts found in the Caribbean sclerosponge: Ceratoporella nicholsoni. Appl Environ Microbiol 56:1750–1762

    PubMed  CAS  Google Scholar 

  • Sarà M (1971) Ultrastructural aspects of the symbiosis between two species of the genus Aphanocapsa (Cyanophyceae) and Ircinia variabilis (Demospongiae). Mar Biol 11:214–221

    Article  Google Scholar 

  • Sarma AS, Daum T, Müller WEG (1993) Secondary metabolites from marine sponges. Akademie gemeinnütziger Wissenschaften zu Erfurt, Ullstein-Mosby Verlag, Berlin

    Google Scholar 

  • Schmidt EW, Obraztsova AY, Davidson SK, Faulkner DJ, Haygood MG (2000) Identification of the antifungal peptide-containing symbiont of the marine sponge Theonella swinhoei as a novel δ-Proteobacterium,“Candidatus Entotheonella palauensis”. Mar Biol 136:969–977

    Article  CAS  Google Scholar 

  • Schupp P, Eder C, Paul V, Proksch P (1999) Distribution of secondary metabolites in the sponge Oceanapia sp. and its ecological implications. Mar Biol 135:573–580

    Article  CAS  Google Scholar 

  • Shieh WY, Lin YM (1994) Association of heterotrophic nitrogen-fixing bacteria with a marine sponge of Halichondria sp. Bull Mar Sci 54:557–564

    Google Scholar 

  • Shigemori H, Bae M-A, Yazawa K, Sasaki T, Kobayashi J (1992) Alteramide A, a new tetracyclic alkaloid from a bacterium Alteromonas sp. associated with the marine sponge Halichondria okadai. J Org Chem 57:4317–4320

    Article  CAS  Google Scholar 

  • Simpson TL (1984) The cell biology of sponges. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  • Stierle AC, Cardellina JH, Singleton FL (1988) A marine Micrococcus produces metabolites ascribed to the sponge Tedania ignis. Experienta 44:1021

    Article  CAS  Google Scholar 

  • Thacker RW, Becerro MA, Lumbang WA, Paul VJ (1998) Allelopathic interaction between sponges on a tropical reef. Ecology 79:1740–1750

    Article  Google Scholar 

  • Unson MD, Holland ND, Faulkner DJ (1994) A brominated secondary metabolite synthesized by the cyanobacterial symbiont of marine sponge and accumulation of the crystalline metabolite in the sponge tissue. Mar Biol 119:1–11

    Article  CAS  Google Scholar 

  • Vacelet J (1970) Description de cellules a bactéries intranucléaires chez des éponges Verongia. J Microsc 9:333–346.

    Google Scholar 

  • Vacelet J (1975) Etude en mircrosopie électronique de l’association entre bactéries et spongiaires du genre Verongia (Dictyoceratida). J Microsc Biol Cell 23:271–288

    Google Scholar 

  • Vacelet J, Donadey C (1977) Electron microscope study of the association between some sponges and bacteria. J Exp Mar Biol Ecol 30:301–314

    Article  Google Scholar 

  • Vacelet J, Fiala-Médoni A, Fisher CR, Boury-Esnault N (1996) Symbiosis between methane-oxidizing bacteria and a deep-sea carnivorous cladorhizid sponge. Mar Ecol Progr Ser145:77–85

    Article  Google Scholar 

  • Webster NS, Hill RT (2001) The culturable microbial community of the Great Barrier Reef sponge Rhopaloeides odorabile is dominated by an α-Proteobacterium. Mar Biol 138:843–851

    Article  CAS  Google Scholar 

  • Webster NS, Wilson KJ, Blackall LL, Hill RT (2001) Phylogenetic diversity of bacteria associated with the marine sponge Rhopaloeides odorabile. Appl Environ Microbiol 67:434–444

    Article  PubMed  CAS  Google Scholar 

  • Weissenfels N (1976) Bau und Funktion des Susswasserschwammes Ephydatia fluviatilis L. (Porifera). III. Nahrungsaufnahme, Verdauung und Defakation. Zoomorphologie 85:73–88

    Article  Google Scholar 

  • Wilkinson CR (1978a) Microbial associations in sponges. I. Ecology, physiology and microbial populations of coral reef sponges. Mar Biol 49:161–167

    Article  Google Scholar 

  • Wilkinson CR (1978b) Microbial associations in sponges. II. Numerical analysis of sponge and water bacterial populations. Mar Biol 49:169–176

    Article  Google Scholar 

  • Wilkinson CR (1978c) Microbial associations in sponge. III. Ultrastructure of the in situ association in coral reef sponges. Mar Biol 49:177–185

    Article  Google Scholar 

  • Wilkinson CR (1978d) Significance of microbial symbionts in sponge evolution and ecology. Symbiosis 4:135–146

    Google Scholar 

  • Wilkinson CR (1983) Net primary productivity in coral reef sponges. Science 219:410–412

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson CR, Fay P (1979) Nitrogen fixation in coral reef sponges with symbiotic cyanobacteria. Nature 279:527–529

    Article  CAS  Google Scholar 

  • Wilkinson CR, Nowak M, Austin B, Colwell RR (1981) Specificity of bacterial symbionts in Mediterranean and Great Barrier Reef sponges. Microb Ecol 7:13–21

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Imhoff, J.F., Stöhr, R. (2003). Sponge-Associated Bacteria: General Overview and Special Aspects of Bacteria Associated with Halichondria panicea . In: Müller, W.E.G. (eds) Sponges (Porifera). Progress in Molecular and Subcellular Biology, vol 37. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55519-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55519-0_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62471-1

  • Online ISBN: 978-3-642-55519-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics