Skip to main content

Analysis of the Sponge [Porifera] Gene Repertoire: Implications for the Evolution of the Metazoan Body Plan

  • Chapter

Part of the book series: Progress in Molecular and Subcellular Biology ((MMB,volume 37))

Abstract

Sponges [phylum Porifera] form the basis of the metazoan kingdom and represent the evolutionary earliest phylum still extant. Hence, as living fossils, they are the taxon closest related to the hypothetical ancestor of all Metazoa, the Urmetazoa. Until recently, it was still unclear whether sponges are provided with a defined body plan. Only after the cloning, expression and functional studies of characteristic metazoan genes, could it be demonstrated that these animals comprise the structural elements which allow the sponge cells to organize themselves according to a body plan. Adhesion molecules involved in cell—cell and cell—matrix interactions have been identified. Among the cell—cell adhesion molecules the aggregation factor (AF) is the prominent particle. It is composed of a core protein that is associated with the adhesion molecules, a 36 kDa as well as a 86 kDa polypeptide. A galectin functions as a linker of the AF to the cell-membrane-associated receptor, the aggregation receptor (AR). The most important extracellular matrix molecules are collagen- and fibronectin-like molecules. These proteins interact with the cell-membrane receptors, the integrins. In addition, a neuronal receptor has been identified, which — together with the identified neuroactive molecules — indicate the existence of a primordial neuronal network already in Porifera. The primmorph system, aggregated cells that retain the capacity to proliferate and differentiate, has been used to demonstrate that a homeobox-containing gene, Iroquois, is expressed during canal formation in primmorphs. The formation of a body plan in sponges is supported by skeletal elements, the spicules, which are composed in Demospongiae as well as in Hexactinellida of amorphous, noncrystalline silica. In Demospongiae the spicule formation is under enzymic control of silicatein. Already at least one morphogen has been identified in sponges, myotrophin, which is likely to be involved in the axis formation. Taken together, these elements support the recent conclusions that sponges are not merely nonorganized cell aggregates, but already complex animals provided with a defined body plan.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baldauf SL, Roger AJ, Wenk-Siefert I, Doolittle WF (2000) A kingdom-level phylogeny of eukaryotes based on combined protein data. Science 290:972–977

    Article  PubMed  CAS  Google Scholar 

  • Batel R, Bihari N, Rinkevich B, Dapper J, Schäcke H, Schröder HC, Müller WEG (1993) Modulation of organotin-induced apoptosis by the water pollutant methyl mercury in a human lymphoblastoid tumor cell line and a marine sponge. Mar Ecol 93:245–251

    Article  Google Scholar 

  • Blumbach B, Pancer Z, Diehl-Seifert B, Steffen R, Münkner J, Müller I, Müller WEG (1998) The putative sponge aggregation receptor: isolation and characterization of a molecule composed of scavenger receptor cysteine-rich domains and short consensus repeats. J Cell Sci 111:2635–2644

    PubMed  CAS  Google Scholar 

  • Böger H (1988) Versuch über das phylogenetische System der Porifera. Meyniana 40:67–90

    Google Scholar 

  • Borchiellini C, Manuel M, Alivon E, Boury-Esnault N, Vacelet J, Le Parco Y (2001) Sponge paraphyly and the origin of Metazoa. J Evol Biol 14:171–179

    Article  Google Scholar 

  • Bork P, Downing AK, Kieffer B, Campbell ID (1996) Structure and distribution of modules in extracellular proteins. Quart Rev Biophys 29:119–167

    Article  CAS  Google Scholar 

  • Boute N, Exposito JY, Boury-Esnault N, Vacelet J, Noro N, Miyazaki K, Yoshizato K, Garrone R (1996) Type IV collagen in sponges, the missing link in basement membrane ubiquity. Biol Cell 88:37–44

    Article  PubMed  CAS  Google Scholar 

  • Brooks WW, Bing OH, Conrad CH, O’Neill L, Crow MT, Lakatta EG, Dostal DE, Baker KM, Boluyt MO (1997) Captopril modifies gene expression in hypertrophied and failing hearts of aged spontaneously hypertensive rats. Hypertension 30:1362–1368

    Article  PubMed  CAS  Google Scholar 

  • Brower DL, Brower SM, Hayward DC, Ball EE (1997) Molecular evolution of integrins: genes encoding integrin β subunit from a coral and a sponge. Proc Natl Acad Sci USA 94:9182–9187

    Article  PubMed  CAS  Google Scholar 

  • Brusca RC, Brusca GJ (1990) Invertebrates. Sinauer, Sunderland, MA

    Google Scholar 

  • Burger MM, Jumblatt J (1977) Membrane involvement in cell-cell interactions: a two component model system for cellular recognition that does not require live cells. In: Lash JW, Burger MM (eds) Cell and tissue interactions. Raven Press, New York, pp 155–172

    Google Scholar 

  • Buttke TM, Sandstrom PA (1994) Oxidative stress as a mediator of apoptosis. Immunol Today 15:7–10

    Article  PubMed  CAS  Google Scholar 

  • Celis JF, Barrio R (2000) Function of the spalt/spalt-related gene complex in positioning the veins in the in Drosophila wing. Mech Dev 91:31–41

    Article  PubMed  Google Scholar 

  • Cha JN, Shimizu K, Zhou Y, Christianssen SC, Chmelka BF, Stucky GD, Morse DE (1999) Silicatein filaments and subunits from a marine sponge direct the polymerization of silica and silicones in vitro. Proc Natl Acad Sci USA 96:361–365

    Article  PubMed  CAS  Google Scholar 

  • Christoffels VM, Keijser AGM, Houweling AC, Clout DEW, Moorman AFM (2000) Patterning the embryonic heart: identification of five mouse Iroquois homeobox genes in the developing heart. Dev Biol 224:263–274

    Article  PubMed  CAS  Google Scholar 

  • Cohen DR, Cheng 1CW, Cheng SH, Hui C (2000) Expression of two novel mouse Iroquois homeobox genes during neurogenesis. Mech Dev 91:317–321

    Article  PubMed  CAS  Google Scholar 

  • Counter CM, Avilion AA, LeFeuvre CE, Stewart NG, Greider CW, Harley CB, Bacchetti S (1992) Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity. EMBO J 11:1921–1929

    PubMed  CAS  Google Scholar 

  • Custodio MR, Prokic I, Steffen R, Koziol C, Borojevic R, Brümmer F, Nickel M, Müller WEG (1998) Primmorphs generated from dissociated cells of the sponge Suberites domuncula: a model system for studies of cell proliferation and cell death. Mech Ageing Dev 105:45–59

    Article  PubMed  CAS  Google Scholar 

  • Cuvier G (1817) Le règne animal, distribué d’ après son organisation, pour servir de base a l’histoire naturelle des animaux, et d’introduction a l’anatomie comparée. Fortin, Paris

    Google Scholar 

  • Dewel RA (2000) Colonial origin for Eumetazoa: major morphological transitions and the origin of bilaterian complexity. J Morphol 243:35–74

    Article  PubMed  CAS  Google Scholar 

  • Diehl-Seifert B, Kurelec B, Zahn RK, Dorn A, Jerecevic B, Uhlenbruck G, Müller WEG (1985) Attachment of sponge cells to collagen substrata: effect of a collagen assembly factor. J Cell Sci 79:271–285

    PubMed  CAS  Google Scholar 

  • Exposito JY, Garrone R (1990) Characterization of a fibrillar collagen gene in sponges reveals the early evolutionary appearance of two collagen families. Proc Natl Acad Sci USA 87:6669–6673

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Busquets X, Burger MM (1999) Cell adhesion and histocompatibility in sponges.Microsci Res Tech 44:204–218

    Article  CAS  Google Scholar 

  • Fernandez-Busquets X, Kammerer RA, Burger MM (1996) A 25 kDa protein is the basic unit of the core from the 2x104-kDa aggregation factor responsible for species-specific cell adhesion in the marine sponge Microciona prolifera. J Biol Chem 271:23558–23565

    Article  PubMed  CAS  Google Scholar 

  • Field KG, Olsen GJ, Lane DJ, Giovannoni SJ, Ghiselin MT, Raff EC, Pace NR, Raff RA (1988) Molecular phylogeny of the animal kingdom. Science 239:748–753

    Article  PubMed  CAS  Google Scholar 

  • Fishelson L (1981) Observations on the moving colonies of the genus Tethya (Demopsongia, Porifera). Zoomorphology 98:89–99

    Article  Google Scholar 

  • Frøhlich H, Barthel D (1997) Silica uptake of the marine sponge Halichondria panicea in Kiel Bight. Mar Biol 128:115–125

    Article  Google Scholar 

  • Gamulin V, Müller IM, Müller WEG (2000) Sponge proteins are more similar to those of Homo sapiens than to Caenorhabditis elegans. Biol J Linn Soc 71:821–828

    Article  Google Scholar 

  • Gamulin V, Peden JF, Müller IM, Müller WEG (2001) Codon usage in the siliceous sponge Geodia cydonium: highly expressed genes in the simplest multicellular animal prefer C-and G-ending codons. J Zool Evol Res 39:1–6

    Article  Google Scholar 

  • Garrone R (1978) Phylogenesis of connective tissue. Karger Press, Basel

    Google Scholar 

  • Garrone R (1998) Evolution of metazoan collagens. Progr Mol Subcell Biol 21:191–139

    Google Scholar 

  • Goldstein S (1990) Replicative senescence: the human fibroblast comes of age. Science 249:1129–1133

    Article  PubMed  CAS  Google Scholar 

  • Haeckel E (1872) Atlas der Kalkschwamme. G Reimer, Berlin

    Google Scholar 

  • Harley CB (1995) Telomeres in aging. In: Blackburn EH, Greider CW (eds) Telomeres. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 247–263

    Google Scholar 

  • Harley CB, Futcher AB, Greider CW (1990) Telomeres shorten during ageing of human fibroblasts. Nature 345:458–460

    Article  PubMed  CAS  Google Scholar 

  • Hastie ND, Dempster M, Dunlop AG, Thompson AM, Green DK, Allshire RC (1990) Telomere reduction in human colorectal carcinoma and with ageing. Nature 346:866–868

    Article  PubMed  CAS  Google Scholar 

  • Henkart P, Humphreys S, Humphreys T (1973) Characterization of sponge aggregation factor. A unique proteoglycan complex. Biochemistry 12:3045–3050

    Article  PubMed  CAS  Google Scholar 

  • Hooper JNA (1997) Guide to sponge collection and identification. February 1997; J.hooper@mailbox.uq.oz.au

    Google Scholar 

  • Hyman LH (1940) The invertebrates, vol 1. McGraw Hill, New York

    Google Scholar 

  • Hynes RO (1992) Integrins: versatility, modulation and signaling in cell adhesion. Cell 69:11–25

    Article  PubMed  CAS  Google Scholar 

  • Jiang JC, Kirchman PA, Zagulski M, Hunt J, Jazwinski SM (1998) Homologs of the yeast longevity gene LAG1 in Caenorhabditis elegans and human. Genome Res 8:1259–1272

    PubMed  CAS  Google Scholar 

  • Kaandorp JA, Kübler JE (2001) The algorithmic beauty of seaweeds, sponges and corals. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Karprov SA, Efremova SM (1994) Ultrathin structure of the flagellar apparatus in the choanocyte of the sponge Ephydatia fluviatilis. Cytologia 36:403–408

    Google Scholar 

  • Kato H, Enjyoji K (1991) Amino acid sequence and location of the disulfide bonds in bovine beta 2 glycoprotein. I. The presence of the five Sushi domains. Biochemistry 30:11687–11694

    Article  PubMed  CAS  Google Scholar 

  • Knoll AH, Carroll SB (1999) Early evolution: emerging views from comparative biology and geology. Science 284:2129–2137

    Article  PubMed  CAS  Google Scholar 

  • Korotkova GP (1970) Regeneration and somatic embryogenesis in sponges. In: Fry WG (ed) The biology of Porifera. Academic Press, London, pp 423–436

    Google Scholar 

  • Koziol C, Borojevic R, Steffen R, Müller WEG (1998) Sponges (Porifera) model systems to study the shift from immortal to senescent somatic cells: the telomerase activity in somatic cells. Mech Ageing Dev 100:107–120

    Article  PubMed  CAS  Google Scholar 

  • Krasko A, Batel R, Schröder HC, Müller IM, Müller WEG (2000) Expression of silicatein and collagen genes in the marine sponge Suberites domuncula is controlled by silicate and myotrophin. Eur J Biochem 267:4878–4887

    Article  PubMed  CAS  Google Scholar 

  • Kruse M, Leys SP, Müller IM, Müller WEG (1998) Phylogenetic position of the Hexactinellida within the phylum Porifera based on amino acid sequence of the protein kinase C from Rhabdocalyptus dawsoni. J Mol Evol 46:721–728

    Article  PubMed  CAS  Google Scholar 

  • Kruse M, Batel R, Steffen R, Schröder HC, Müller IM, Müller WEG (2000) Sponge homologue to human and yeast gene encoding the longevity assurance polypeptide: differential expression in telomerase-positive and telomerase-negative cells of Suberites domuncula. Mech Ageing Dev 118:115–127

    Article  PubMed  CAS  Google Scholar 

  • Labat-Robert J, Robert L, Auger C, Lethias C, Garrone R (1981) Fibronectin-like proteins in Porifera. Its role in cell aggregation. Proc Natl Acad Sci USA 78:6261–6265

    Article  PubMed  CAS  Google Scholar 

  • Lewis JM, Schwartz MA (1995) Mapping in vivo associations of cytoplasmic proteins with integrin beta 1 cytoplasmic domain mutants. Mol Biol Cell 6:151–160

    PubMed  CAS  Google Scholar 

  • Lorenz B, Batel R, Bachinski N, Müller WEG, Schröder HC (1995) Purification of two exopolyphosphatases from the marine sponge Tethya lyncurium. Biochim Biophys Acta

    Google Scholar 

  • Lorenz B, Bohnensack R, Gamulin V, Steffen R, Mü WEG (1996) Regulation of motility of cells from marine sponges by calcium ions. Cell Signalling 8:517–524

    Article  PubMed  CAS  Google Scholar 

  • Mackie G, Lawn ID, Pavans de Ceccatty M (1983) Studies on hexactinellid sponges. II. Excitability, conduction and coordination of responses in Rhabdocalyptus dawsoni (Lambe, 1973). Philos Trans R Soc Lond 301:401–418

    Article  Google Scholar 

  • Manuel M, Le Parco Y (2000) Homeobox gene diversification in the calcareous sponge, Sycon raphanus. Mol Phylogenet Evol 17:97–107

    Article  PubMed  CAS  Google Scholar 

  • Medina M, Collins AG, Silberman JD, Sogin ML (2001) Evaluating hypothesis of basal animal phylogeny using complete sequences of large and small subunit rRNA. Proc Natl Acad Sci USA 98:9707–9712

    Article  PubMed  CAS  Google Scholar 

  • Mehl D, Reiswig HM (1991) The presence of flagellar vanes in choanomeres of Porifera and their possible phylogenetic implications. Z Zool Syst Evol Forsch 29:312–319

    Article  Google Scholar 

  • Misevic GN, Jumblatt JE, Burger MM (1982) Cell binding fragments from a sponge proteoglycan-like aggregation factor. J Biol Chem 257:46931–6936

    Google Scholar 

  • Müller CI, Blumbach B, Krasko A, Schröder HC (2001) Receptor protein-tyrosine phosphatases: origin of domains (catalytic domain, Ig-related domain, fibronectin type III module) based on the sequence of the sponge Geodia cydonium. Gene 262:221–230

    Article  PubMed  Google Scholar 

  • Müller WEG (1982) Cell membranes in sponges. Int Rev Cytol 77:129–181

    Article  Google Scholar 

  • Müller WEG (1995) Molecular phylogeny of Metazoa (animals): monophyletic origin. Naturwissenschaften 82:321–329

    Article  PubMed  Google Scholar 

  • Müller WEG (1997) Origin of metazoan adhesion molecules and adhesion receptors as deduced from their cDNA analyses from the marine sponge Geodia cydonium. Cell Tissue Res 289:383–395

    Article  PubMed  Google Scholar 

  • Müller WEG (ed) (1998a) Molecular evolution: evidence for monophyly of Metazoa. Prog Mol Subcell Biol 19. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Müller WEG (ed) (1998b) Molecular evolution: towards the origin of Metazoa. Prog Mol Subcell Biol 21. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Müller WEG (1998c) Herstellung von Primmorphen aus dissoziierten Zellen von Schwämmen, Korallen und weiteren Invertebraten: Verfahren zur Kultivierung von Zellen von Schwämmen und weiteren Invertebraten zur Produktion und Detektion von bioaktiven Substanzen, zur Detektion von Umweltgiften und zur Kultivierung dieser Tiere in Aquarien und im Freiland. German, European and International patent application (DE 198 24 384)

    Google Scholar 

  • Mü WEG (2001) How was the metazoan threshold crossed: the hypothetical Urmetazoa. Comp Biochem Physiol A 129:433–460

    Article  Google Scholar 

  • Mü WEG, Zahn RK (1973) Purification and characterization of a species-specific aggregation factor in sponges. Exp Cell Res 80:95–104

    Article  Google Scholar 

  • Mü WEG, Mü I, Zahn RK, Kurelec B (1976) Species-specific aggregation factor in sponges. VI. Aggregation receptor from the cell surface. J Cell Sci 21:227–241

    Google Scholar 

  • Mü WEG, Zahn RK, Arendes J, Kurelec B, Steffen R, Mü I (1979) Aggregation of sponge cells. Self-aggregation of the circular proteid particle. Biochim Biophys Acta 551:363–367

    Google Scholar 

  • Mü WEG, Schröder HC, Ushijima H, Dapper J, Bormann J (1992) Gp120 of HIV-1 induces apoptosis in rat cortical cell cultures: prevention by memantine. Eur J Pharmacol (Mol Pharmacol Sec) 226:209–214

    Article  Google Scholar 

  • Mü WEG, Kruse M, Koziol C, Leys SP (1998) Evolution of early Metazoa: phylogenetic status of the Hexactinellida within the phylum of Porifera [sponges]. Prog Mol Subcell Biol 21:141–156

    Article  Google Scholar 

  • Mü WEG, Wiens M, Batel R, Steffen R, Borojevic R, Custodio MR (1999a) Establishmentof a primary cell culture from a sponge: primmorphs from Suberites domuncula. Mar Ecol Prog Ser 178:205–219

    Article  Google Scholar 

  • Mü WEG, Blumbach B, Mü IM (1999b) Evolution of the innate and adaptive immune systems: relationships between potential immune molecules in the lowest metazoan phylum [Porifera] and those in vertebrates. Transplantation 68:1215–1227

    Article  Google Scholar 

  • Mü WEG, Böhm M, Batel R, De Rosa S, Tommonaro G, Mü IM, Schröder HC (2000) Application of cell culture for the production of bioactive compounds from sponges: synthesis of avarol by primmorphs from Dysidea avara. J Nat Prod 63:1077–1081

    Article  CAS  Google Scholar 

  • Mü WEG, Schröder HC, Skorokhod A, Bünz C, Mü IM, Grebenjuk VA (2001) Contribution of sponge genes to unravel the genome of the hypothetical ancestor of Metazoa (Urmetazoa). Gene 276:161–173

    Article  Google Scholar 

  • Mü WEG, Krasko A, Le Pennec G, Steffen R, Ammar MSA, Mü IM, Schröder HC (2003) Molecular mechanism of spicule formation in the demosponge Suberites domuncula: silicatein — collagen — myotrophin. Prog Mol Subcell Biol 33:195–221

    Article  Google Scholar 

  • Olson EN, Srivastava D (1996) Molecular pathways controlling heart development. Science 272:671–676

    Article  PubMed  CAS  Google Scholar 

  • Pahler S, Blumbach B, Mü I, Mü WEG (1998) A putative multiadhesive basal lamina protein from the marine sponge Geodia cydonium: cloning of the cDNA encoding a fibronectin-, an SRCR-as well as a complement control protein module. J Exp Zool 282:32–343

    Article  Google Scholar 

  • Pancer Z, Kruse M, Mü I, Mü WEG (1997) On the origin of adhesion receptors of Metazoa: cloning of the integrin α subunit cDNA from the sponge Geodia cydonium. Mol Biol Evol 14:391–398

    Article  PubMed  CAS  Google Scholar 

  • Pavans de Ceccatty M (1982) In vitro aggregation of syncytia and cells of a hexactinellid sponge. Dev Comp Immunol 6:15–22

    Article  Google Scholar 

  • Pavans de Ceccatty M, Cargouil M, Coraboef E (1960) Les réactions motrice de l’éponge Tethya lyncurium (Lmk.) à quelques stimulations experimentales. Vie Milieu 11:594–600

    Google Scholar 

  • Pechenik JA (2000) Biology of the invertebrates. McGraw Hill, Boston

    Google Scholar 

  • Perovic S, Prokic I, Krasko A, Müller IM, Müller WEG (1999) Origin of neuronal-like receptors in Metazoa: cloning of a metabotropic glutamate/GABA-like receptor from the marine sponge Geodia cydonium. Cell Tissue Res 296:395–404

    Article  PubMed  CAS  Google Scholar 

  • Peterson KJ, Davidson EH (2000) Regulatory evolution and the origin of the bilaterians. Proc Natl Acad Sci USA 97:4430–4433

    Article  PubMed  CAS  Google Scholar 

  • Pfeifer K, Haasemann M, Gamulin V, Bretting H, Fahrenholz F, Müller WEG (1993) S-type lectins occur also in invertebrates: high conservation of the carbohydrate recognition domain in the lectin genes from the marine sponge Geodia cydonium. Glycobiol 3:179–184

    Article  CAS  Google Scholar 

  • Rasmont R (1963) Le rôle de la taille et de la nutrition dans le déterminisme de la gemmulation chez les spongillides. Dev Biol 8:243–271

    Article  Google Scholar 

  • Reid KBM, Day AJ (1989) Structure-function relationship of the complement components. Immunol Today 10:177–180

    Article  PubMed  CAS  Google Scholar 

  • Reiswig H (1971) In situ pumping activities of tropical demospongiae. Mar Biol 9:38–50

    Article  Google Scholar 

  • Resnick D, Pearson A, Krieger M (1994) The SRCR superfamily: a family reminiscent of the Ig superfamily. Trends Biochem Sci 19:5–8

    Article  PubMed  CAS  Google Scholar 

  • Reszeka AA, Hayashi Y, Horwitz AF (1992) Identification of amino acid sequences in the integrin β1 cytoplasmic domain implicated in cytoskeletal associations. J Cell Biol 117:1321–1330

    Article  Google Scholar 

  • Schröder HC, Krasko A, Batel R, Skorokhod A, Pahler S, Kruse M, Müller IM, Müller WEG (2000a) Stimulation of protein (collagen) synthesis in sponge cells by a cardiac myotrophin-related molecule from Suberites domuncula. FASEB J 14:2022–2031

    Article  PubMed  Google Scholar 

  • Schröder HC, Kruse M, Batel R, Müller IM, Müller WEG (2000b) Cloning and expression of the sponge longevity gene SDLAGL. Mech Dev 95:219–220

    Article  PubMed  Google Scholar 

  • Schütze J, Reis Custodio M, Efremova SM, Müller IM, Müller WEG (1999) Evolutionary relationship of Metazoa within the eukaryotes based on molecular data from Porifera. Proc R Soc Lond B 266:63–73

    Article  Google Scholar 

  • Schütze J, Krasko A, Diehl-Seifert B, Müller WEG (2001a) Cloning and expression of the putative aggregation factor from the marine sponge Geodia cydonium. J Cell Sci 114:3189–3198

    PubMed  Google Scholar 

  • Schütze J, Skorokhod A, Pahler S, Müller IM, Müller WEG (2001b) Molecular evolution of metazoan extracellular matrix: cloning and expression of structural proteins from the demosponges Suberites domuncula and Geodia cydonium. J Mol Evol 53:402–415

    Article  PubMed  CAS  Google Scholar 

  • Schwartz MA, Schaller MD, Ginsberg MK (1995) Integrins: emerging paradigms of signal transduction. Ann Rev Cell Dev Biol 11:49–99

    Article  Google Scholar 

  • Seimiya M, Naito M, Watanabe, Y, Kurosawa Y (1998) Homeobox genes in the freshwater sponge Ephydatia fluviatilis. Prog Mol Subcell Biol 19:132–155

    Google Scholar 

  • Simpson TL (1984) The cell biology of sponges. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  • Strehler BL (1986) Genetic instability as the primary cause of human aging. Exp Gerontol 21:283–319

    Article  PubMed  CAS  Google Scholar 

  • Thiney Y (1972) Morphologie et cytochimie ultrastructurale de l’ oscule d’ Hippospongia communis LMK et de sa régénération. Thèse, Univ Claude Bernard, Montpellier, pp 1–63

    Google Scholar 

  • Thompson CB (1995) Apoptosis in the pathogenesis and treatment of disease. Science 267:1456–1462

    Article  PubMed  CAS  Google Scholar 

  • Topsent E (1887) Contribution à l’étude des Clionides. Arch Zool Exp Gén 5:1–165

    Google Scholar 

  • Vacelet J (1966) Les cellules contractiles de l’éponge cornée Verongia cavernicola Vacelet. C R Acad Sci Paris 263:1330–1332

    Google Scholar 

  • Vacelet J, Boury-Esnault N (1995) Carnivorous sponges. Nature 373:333–335

    Article  CAS  Google Scholar 

  • Vogel S (1994) Life in moving fluids. Princeton University Press, Princeton

    Google Scholar 

  • Wagner C, Steffen R, Koziol C, Batel R, Lacorn M, Steinhart H, Simat T, Müller WEG (1998) Apoptosis in marine sponges: a biomarker for environmental stress (cadmium and bacteria). Mar Biol 131:411–421

    Article  CAS  Google Scholar 

  • Wagner-Hülsmann C, Bachinski N, Diehl-Seifert B, Blumbach B, Steffen R, Pancer Z, Müller WEG (1996) A galectin links the aggregation factor to cells in the sponge [Geodia cydonium] system. Glycobiol 6:785–793

    Article  Google Scholar 

  • Wainright PO, Hinkle G, Sogin ML, Stickel SK (1993) Monophyletic origins of the Metazoa: an evolutionary link to fungi. Science 260:340–342

    Article  PubMed  CAS  Google Scholar 

  • Weinbaum G, Burger MM (1973) A two-component system for surface guided reassociation of animal cells. Nature 244:510–512

    Article  PubMed  CAS  Google Scholar 

  • Weissenfels N, Landschoff HW (1977) Bau und Funktion des Süβwasserschwammes Ephydatia fluviatilis L. (Porifera). IV. Die Entwicklung der monaxialen SiO2-Nadeln in Sandwich-Kulturen. Zool Jahrb Abt Anat 98:355–371

    Google Scholar 

  • Weyer S, Rützler K, Rieger R (1999) Serotonin in Porifera? Evidence from developing Tedania ignis, the Caribbean fire sponge (Demospongiae). Mem Queensland Mus 44:381–397

    Google Scholar 

  • Wiens M, Kuusksalu A, Kelve M, Müller WEG (1999) Origin of the interferon-inducible (2’–5’)oligoadenylate synthetases: cloning of the (2’–5’)oligoadenylate synthetase from the marine sponge Geodia cydonium. FEBS Lett 462:12–18

    Article  PubMed  CAS  Google Scholar 

  • Wiens M, Krasko A, Müller CI, Müller WEG (2000a) Molecular evolution of apoptotic pathways: cloning of key domains from sponges (Bcl-2 homology domains and death domains) and their phylogenetic relationships. J Mol Evol 50:520–531

    PubMed  CAS  Google Scholar 

  • Wiens M, Krasko A, Müller IM, Müller WEG (2000b) Increased expression of the potential proapoptotic molecule DD2 and increased synthesis of leukotriene B4 during allograft rejection in a marine sponge. Cell Death Diff 7:461–469

    Article  CAS  Google Scholar 

  • Wiens M, Diehl-Seifert B, Müller WEG (2001) Sponge Bcl-2 homologous protein (BHP2-GC) confers selected stress resistance to human HEK-293 cells. Cell Death Diff 8:887–898

    Article  CAS  Google Scholar 

  • Wilson HV (1907) On some phenomena of coalescence and regeneration in sponges. J Exp Zool 5:245–258

    Article  Google Scholar 

  • Wimmer W, Blumbach B, Diehl-Seifert B, Koziol C, Batel R, Steffen R, Müller IM, Müller WEG (1999a) Increased expression of integrin and receptor tyrosine kinase genes during autograft fusion in the sponge Geodia cydonium. Cell Adhesion Commun 7:111–124

    Article  CAS  Google Scholar 

  • Wimmer W, Perovic S, Kruse M, Krasko A, Bate R, Müller WEG (1999b) Origin of the integrin-mediated signal transduction: functional studies with cell cultures from the sponge Suberites domuncula. Eur J Biochem 178:156–165

    Article  Google Scholar 

  • Yamada KM, Aota S, Akiyama SK, LaFlamme SE (1992) Mechanisms of fibronectin and integrin function during cell adhesion and migration. Cold Spring Harbor Symp Quant Biol 57:203–212

    Article  PubMed  CAS  Google Scholar 

  • Zipfel PE, Skerka C (1994) Complement factor H and related proteins: an expanding family of complement-regulatory protein? Immunol Today 15:121–126

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Müller, W.E.G., Müller, I.M. (2003). Analysis of the Sponge [Porifera] Gene Repertoire: Implications for the Evolution of the Metazoan Body Plan. In: Müller, W.E.G. (eds) Sponges (Porifera). Progress in Molecular and Subcellular Biology, vol 37. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55519-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55519-0_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62471-1

  • Online ISBN: 978-3-642-55519-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics