Skip to main content

On Retarded Potential Boundary Integral Equations and their Discretisation

  • Chapter

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 31))

Summary

The paper deals with the retarded potential boundary integral equations (RPBIE) used in the numerical resolution of transient scattering problems (the so-called time domain boundary element methods). We propose here a review and update of the mathematical analysis of the involved RPBIE. Our approach, via Laplace transform, is described in some details for the classical acoustic scattering problems. The main results are: (i) existence and uniqueness theorems on a functional framework closely linked to the energy of the scattered waves; (ii) space-time variational formulations for the so-called “first kind” RPBIE, with coerciveness obtained by energy estimates. That leads us to advocate choosing these first kind RPBIE and their Galerkin approximations, instead of the second kind RPBIE and the collocation approximations. The actual space-time boundary elements are described in some detail. Examples of numerical experiments that confirm the unconditional stability of our schemes are reported, as well as references for similar results in other related work.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Abboud, Recent Developments in Retarded Potential Methods, slides from a presentation at the PSCl Workshop on Computational Electromagnetics, KTH Stockholm, December 1998. http: / / imacs. polytechnique. fr/presentat ions /retarded/toc_b.html

    Google Scholar 

  2. T. Abboud, J. El Gharib and B. Zhou, Retarded Potentials for Acoustic Impedance Problems, Proc. of the 5th Intern. Conf. on Math. Numer. Aspects of Wave Propagations, Santiago de Compostela, Spain 2001, p. 703–708.

    Google Scholar 

  3. K.E. Atkinson, The Numerical Solutions of Integral Equations of the Second Kind, Cambridge University Press, 1997.

    Google Scholar 

  4. A. Bachelot, L. Bounhoure and A. Pujols, Couplage éléments finis-potentiels retardés pour la diffraction électromagnétique par un obstacle hétérogène, Numer. Math., 89, (2000), 257–306.

    Article  MathSciNet  Google Scholar 

  5. A. Bachelot, V. Lange, Time Dependent Integral Method for Maxwell’s System, Proc. of the 3rd Intern. Conf. on Math, and Numer. Aspects of Wave Propagation Phenomena, Mandela (France), (1995), 151–159.

    Google Scholar 

  6. A. Bachelot, V. Lange, Time Dependent Integral Method for Maxwell’s System with Impedance Boundary Condition, Proc. of the 10th Intern. Conf. on Boundary Element Technology, (1995), 137–144.

    Google Scholar 

  7. A. Bachelot, V. Lubet, On the Coupling of Boundary Element and Finite Element Methods for a Time Problem, Proc. of the 3rd Intern. Conf. on Math, and Numer. Aspects of Wave Propagation Phenomena, Mandela (France), (1995), 130–139.

    Google Scholar 

  8. A. Bachelot, A. Pujols, Equations intégrales Espace-Temps pour le système de Maxwell, CRAS, série I, t.314, (1992), 639–644.

    MathSciNet  Google Scholar 

  9. A. Bamberger, T. Ha-Duong, Formulation variationnelle espace-temps pour le calcul par potentiel retardé d'une onde acoustique. Math. Meth. Appl. Sei.,8, (1986), 405–435 and 598-608.

    Article  MathSciNet  MATH  Google Scholar 

  10. D. Barbier, Méthodes des potentiels retardés pour la simulation de la diffraction d'onde élastodynamique par une fissure tridimensionnelle. Thèse de l'école Polytechnique, 1999.

    Google Scholar 

  11. E. Bécache, Résolution par une méthode d'équations intégrales d'un problème de diffraction d'ondes élastiques transitoires par une fissure. Thèse de l'Université Paris 6, 1991.

    Google Scholar 

  12. E. Bécache, A Variational Boundary Integral Equation Method for an Elastodynamic Antiplane Crack, Int. J. for Numer. Meth. in Eng. 36, (1993), 969–984.

    Article  MATH  Google Scholar 

  13. E. Bécache, J-C. Nédélec and N. Nishimura, Regularization in 3D for Anistropic Elastodynamic Crack and Obstacle Problems, J. of Elasticity 31, (1993), 25–46.

    Article  MATH  Google Scholar 

  14. E. Bécache, T. Ha-Duong, A Space-Time Variational Formula for the Boundary Integral Equation in a 2D Elastic Crack Problem, Math. Modelling and Numer. Anal. 28(2), (1994), 141–176.

    MATH  Google Scholar 

  15. D. Beskos, Boundary Element Methods in Dynamic Analysis: Part II (1986–1996), Appl. Mech. Rev. 50(3), 149–197.

    Google Scholar 

  16. B. Birgisson, E. Siebrits and A.P. Pierce, Elastodynamic Direct Boundary Element Methods with Enhanced Numerical Stability Properties, Int. J. Numer. Meth. Eng. 46, (1999), 871–888.

    Article  MATH  Google Scholar 

  17. M. Bonnet, G. Maier and C. Polizzotto, Symmetric Galerkin Boundary Element Methods, Appl. Mech. Rev. 51(11), 669–704.

    Google Scholar 

  18. L. Bounhoure, Couplage éléments finis-potentiels retardés pour la diffraction électromagnétique par un obstacle hétérogène. Thèse de l'Université de Bordeaux I, 1998.

    Google Scholar 

  19. J.J. Bowman, T.B.A. Senior and P.L.E. Uslenghi, Electromagnetic and Acoustic Scattering by Simple Shapes, A SUMMA Book, 1987.

    Google Scholar 

  20. M. J. Bluck and S. P. Walker, Analysis of Three-Dimensional Transient Acoustic Wave Propagation using the Boundary Integral Equation Method, Int. J. Numer. Meth. Eng. 39, (1996), 1419–1431.

    Article  MATH  Google Scholar 

  21. I. Yu. Chudinovich, The Boundary Integral Equation Method in the Third Boundary Value Problem of the Theory of Elasticity, Math. Meth. Appl. Sei., 16, (1994), 203–215 and 217–227.

    Google Scholar 

  22. D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, Springer Veriag, 1992.

    Google Scholar 

  23. M. Costabel, Developments in Boundary Element Methods for Time-Dependent Problems, in L. Jentsch, F. Trlzsch (eds). Problems and Methods in Mathematical Physics, B.G. Teubner, Leipzig 1994, pp. 17–32.

    Google Scholar 

  24. R. Dautray, J.L. Lions, Analyse mathématiques et calcul numérique pour les sciences et techniques, Masson, Paris 1985.

    Google Scholar 

  25. P.J. Davies, Numerical stability and convergence of approximations of retarded potential integral equations, SIAM J. Numer. Anal. 31: 856–875 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  26. PJ. Davies, D.B. Duncan, Averaging techniques for time marching schemes for retarded potential integral equations. Applied Numerical Mathematics 23 (1997), 291–310.

    Article  MathSciNet  MATH  Google Scholar 

  27. P.J. Davies, A stability analysis of a time marching scheme for the general surface electric field integral equation, Applied Numerical Mathematics 27(1) (1998), 33–57.

    Article  MathSciNet  MATH  Google Scholar 

  28. P.J. Davies, D.B. Duncan, On the behaviour of time discretisations of the electric field integral equation. Applied Mathematics and Computation 107 (2000), 1–26.

    Article  MathSciNet  MATH  Google Scholar 

  29. P.J. Davies, D.B. Duncan, Stability and convergence of collocation schemes for retarded potential integral equations, Strathclyde Mathematics Report 2001/23.

    Google Scholar 

  30. S.J. Dodson, S.P Walker and M.J. Bluck, Implicitness and stability of time domain integral equation scattering analysis, ACES J., 13 (1998), 291–301.

    Google Scholar 

  31. Y. Ding, A. Eorestier, T. Ha-Duong, A Galerkin Scheme for the Time Domain Integral Equation of Acoustic Scattering from a Hard Surface, J. Acoust. Soc. Am., 86(4) (1989), 1566–1572.

    Article  Google Scholar 

  32. J. El Gharib, Problèmes de potentiels retardés pour l'acoustique. Thèse de l'école Polytechnique, 1999.

    Google Scholar 

  33. A.A. Ergin, B. Shanker and E. Michielssen, Fast analysis of tiansient acoustic wave scattering from rigid bodies using the multilevel plane wave time domain algorithm, J. Acoust. Soc. Am, 117(3), (2000), 1168–1178.

    Article  Google Scholar 

  34. M. Filipe, Etude mathématique et numérique d'un problème d'interaction fluide-structure dépendant du temps par la méthode de couplage Eléments Finis-Equations Intégrales, Thèse de l'école Polytechnique, 1994.

    Google Scholar 

  35. M. Filipe, A, Forestier, T. Ha-Duong, A Time Dependent Acoustic Scattering Problem, Proc. of the 3rd Intern. Conf. on Math, and Numer. Aspects of Wave Propagation Phenomena, Mandelieu (France), (1995), 140–150.

    Google Scholar 

  36. M. Filipe, T, Ha-Duong, A Coupling of FEM-BEM for Elastic Structure in a Transient Acoustic Field, Proc. of the 15th Biennial Conference on Mechanical Vibration and Noise, ASME Design Engineering Technical Conf., Boston (USA), (1995), 3, part B, 33–38.

    Google Scholar 

  37. M.B. Friedman and R.P. Shaw, Diffraction of Pulses by Cylindrical Obstacles of Arbitrary Cross Section, J. Appl, Mech., 29, (1962), 40–46.

    Article  MathSciNet  MATH  Google Scholar 

  38. T, Ha-Duong, Equations integrales pour la résolution numérique de problèmes de diffraction d'ondes acoustiques dans R 3, Thèse de l'Université de Paris VI, 1987.

    Google Scholar 

  39. T, Ha-Duong, A Mathematical Analysis of Boundary Integral Equations in the Scattering Problems of Transient Waves, in Boundary Element Methods, vol. IX, CA, Brebia, W.L. Wendland and G. Kuhn (eds), (1987), 101–114.

    Google Scholar 

  40. T, Ha-Duong, On the Transient Acoustic Scattering by a Flat Object, Japan J. Appl, Maul., 7 (1990), 489–513.

    Article  MathSciNet  MATH  Google Scholar 

  41. T. Ha-Duong, B, Ludwig and I. Terrasse, A Galerkin BEM for Transient Acoustic Scattering by an Absorbing Obstacle, to appear in Intern. J. Numer. Meth. Eng. (2002)

    Google Scholar 

  42. V. Lange, Equations intégrales espace-temps pour les équations de Maxwell. Calcul du champ diffracté par un obstacle dissipatif. Thèse de l'Université de Bordeaux I, 1995.

    Google Scholar 

  43. J.L. Lions, E, Magenes, Problèmes aux limites non homogènes, Dunod, Paris 1968.

    MATH  Google Scholar 

  44. V, Lubet, Couplage potentiels retardés-éléments finis pour la résolution d'un problème de diffraction d'ondes par un obstacle inhomogène. Thèse de V Université de Bordeaux I, 1994

    Google Scholar 

  45. C. Lubich, On the multistep time discretization of linear initial-boundary value problems and their boundary integral equations, Numer. Math., 67, (1994), 365–390

    Article  MathSciNet  MATH  Google Scholar 

  46. B. Ludwig, Quelques problèmes inverses en acoustique transitoire. Thèse de l'Université de Compiègne, 2000.

    Google Scholar 

  47. B. Ludwig, I. Terrasse, S. Alestra and T. Ha-Duong, Résolution numérique du problème de reconstruction de sources acoustiques transitoires par les méthodes d'éléments de frontière, Proc. of the 4th Intern. Conf. on Acoustic and Vibratory Surv. Meth. and Diagnostic Tech., Compigne, France 2001, p. 565–574

    Google Scholar 

  48. B. Ludwig, I. Terrasse, S. Alestra and T. Ha-Duong, Inverse Acoustic Impedance Problems transitoire, Proc. of the 5th Intern. Conf. on Math. Numer. Aspects of Wave Propagations, Santiago de Compostela, Spain 2001, p. 667–671.

    Google Scholar 

  49. E.K. Miller, An overview of time-domain integral equations models in electromagnetics, J. of Electromagnetic Waves and Appl. 1 (1987), 269–293.

    Article  Google Scholar 

  50. CS. Morawetz, Decay for solutions of the exterior problem for the wave equation. Comm. on Pure and Appl. Math. 28 (1975), 229–264.

    Article  MathSciNet  MATH  Google Scholar 

  51. J.C. Nédélec, Curved finite element methods for the solution of the singular integral equations on surface in R 3, Comp. Meth. Appl. Mech. Eng. 8 (1976), 61–80.

    Article  MATH  Google Scholar 

  52. A.P. Pierce and E. Slebrits, Stability Analysis and Design of Time-Stepping Schemes for General Elastodynamic Boundary Element Models, Int. J. Numer. Meth. Eng. 40, (1997), 319–342.

    Article  Google Scholar 

  53. A. Pujols, Equations intégrales espaces-temps pour le système de Maxwell. Application au calcul de la surface équivalente radar. Thèse de l'Université de Bordeaux I, 1991.

    Google Scholar 

  54. B.P Rynne, Stability and convergence of time marching methods in scattering problems, IMA J. of Appl. Math., 35, (1985), p, 297–310

    Article  MathSciNet  MATH  Google Scholar 

  55. B.P. Rynne, instabilities in time marching methods for scattering problems, Electromagnetics, 6, (1986),p. 129–144.

    Article  Google Scholar 

  56. B.P Rynne, P.D. Smith, Stability of Time Marching Algorithms for the Electric Field Integral Equation, J. Electromagnetic Waves and Appl. 4, (1990), 1181–1205.

    Article  Google Scholar 

  57. T. Sayah, Méthodes des Potentiels Retardés pour les milieux hétérogènes et l'approximation des couches minces par conditions d'impédance généralisées en électromagnétisme. Thèse de l'Université Paris 6, 1998.

    Google Scholar 

  58. J.A. Stratton, Electromagnetic Theory, McGraw-Hill, New York 1941.

    MATH  Google Scholar 

  59. I. Terrasse, Résolution mathématique et numérique des équations de Maxwell instationnaires par une méthode de potentiels retardés. Thèse de l'école Polytechnique, 1993.

    Google Scholar 

  60. F. Trèves, Basic linear partial differential equations, Academic Press, New York 1975.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ha-Duong, T. (2003). On Retarded Potential Boundary Integral Equations and their Discretisation. In: Ainsworth, M., Davies, P., Duncan, D., Rynne, B., Martin, P. (eds) Topics in Computational Wave Propagation. Lecture Notes in Computational Science and Engineering, vol 31. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55483-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55483-4_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00744-9

  • Online ISBN: 978-3-642-55483-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics