Skip to main content

hp-Adaptive Finite Elements for Time-Harmonic Maxwell Equations

  • Chapter

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 31))

Summary

We review the fundamentals of hp-finite element discretisation of Maxwell equations and their numerical implementation, and describe an automatic hp-adaptive scheme for the time-harmonic Maxwell equations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Adams, Sobolev Spaces, Academic Press, New York 1978.

    Google Scholar 

  2. M. Ainsworth, and J. Coyle, Hierarchic hp-edge Element Families for Maxwell’s Equations on Hybrid Quadrilateral/Triangular Meshes, Computer Methods in Applied Mechanics and Engineering, 190, 6709–6733, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  3. M. Ainsworth, and J. Coyle, Conditioning of Hierarchic p-Version Nédélec Elements on Meshes of Curvilinear Quadrilaterals and Hexahedra, preprint 2002.

    Google Scholar 

  4. M. Ainsworth, and J. Coyle, Hierarchic Finite Element Bases on Unstructured Tetrahedral Meshes, preprint 2002.

    Google Scholar 

  5. I. Babuška and M. Suri, The Optimal Convergence Rate of the p-Version of the Finite Element Method, SIAM J. Numer. Anal., 24,4, 750–776, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  6. I. Babuška, A. Craig, J. Mandel, and J. Pitkaränta, Efficient Preconditioning for the p-Version Finite Element Method in Two Dimensions, SIAM J. Numer. Anal., 28,3, 624–661, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  7. R. Beck, P. Deuflhard, R. Hiptmair, R.H.W. Hoppe, B. Wohlmuth, Adaptive Multilevel Methods for Edge Element Discretizations of Maxwell’s Equations, Surv. Meth. Ind. (1999),8: 271–312.

    Google Scholar 

  8. D. Boffi, Discrete Compactness and Fortin Operator for Edge Elements, Preprint, March 1999.

    Google Scholar 

  9. D. Boffi, A Note on the Discrete Compactness Property and die de Rham Diagram, Appl. Math. Lett., 14,1, 33–38, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  10. D. Boffi, L. Demkowicz, and M Costabel, Discrete Compactness for p and hp 2D Edge Finite Elements, TICAM Report 02-21, May 2002.

    Google Scholar 

  11. A. Bossavit, Un noveau point de vue sur les éléments finis mixtes, Matapli (bulletin de la Société de Mathématiques Appliquées et Industrielles, 23–35, 1989.

    Google Scholar 

  12. W. Cecot, L. Demkowicz, and W. Rachowicz, A Two-Dimensional Infinite Element for Maxwell’s Equations, Computer Methods in Applied Mechanics and Engineering, 188, 625–643, 2000.

    Article  MATH  Google Scholar 

  13. W. Cecot, L. Demkowicz, and W. Rachowicz, An hp-Adaptive Finite Element Method for Electromagnetics. Part 3: A Three-Dimensional Infinite Element for Maxwell’s Equations, International Journal for Numerical Methods in Engineering, in print.

    Google Scholar 

  14. M. Cessenat, Mathematical Methods in Electromagnetism, World Scientific, Singapure 1996.

    MATH  Google Scholar 

  15. M. Costabel and M. Dauge, Singularities of Electromagnetic Fields in Polyhedral Domains, Arch Rational Mech Anal. 151, 221–276, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  16. M. Costabel, A Coercive Bilinear Form for Maxweh’s Equations, Math. Methods Appl. Sci, 12,4, 365–368, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  17. M. Costabel and M. Dauge, Weighted Regularization of Maxwell Equadons in Polyhedral Domains, preprint 2001 (http://www.maths.umv-rennes1.fr/costabel/).

    Google Scholar 

  18. L. Demkowicz, Edge Finite Elements of Variable Order for Maxwell’s Equations, in Scientific Computing in Electrical Engineering, Proceedings of the 3rd International Workshop, August 20–23, Warnemuende, Germany, (Lecture Notes in Computational Science and Engineering 18), Springer Verlag, Berlin 2000.

    Google Scholar 

  19. L. Demkowicz, and L Babuška, Optimal p Interpolation Error Estimates for Edge Finite Elements of Variable Order in 2D, TICAM Report 01-11, accepted to SIAM Journal on Numerical Analysis.

    Google Scholar 

  20. L. Demkowicz and M. Pal, An Infinite Element for Maxwell’s Equations, Computers Methods in Applied Mechanics and Engineering, 164, 77–94, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  21. L. Demkowicz, W. Rachowicz, and Ph. Devloo, A Fully Automatic hp-Adaptivity, Journal of Scientific Computing, 17,1–3, 127–155, 2002.

    MathSciNet  Google Scholar 

  22. L. Demkowicz, D. Pardo. and W. Rachowicz, 3D hp-Adaptive Finite Element Package (3Dhp90). Version 2.0, TICAM Report 02-24, June 2002.

    Google Scholar 

  23. L. Demkowicz, I. Babuška, J. Schöberl, and P. Monk, De Rham Diagram in 3D. Quasi Optimal p-Interpolation Estimates, TICAM Report, in preparation.

    Google Scholar 

  24. L. Demkowicz, P. Monk, L. Vardapetyan, and W. Rachowicz. De Rham Diagram for hp Finite Element Spaces Mathematics and Computers with Applications, 39, 7–8, 29–38, 2000.

    MathSciNet  Google Scholar 

  25. L. Demkowicz, P. Monk, Ch. Schwab, and L. Vardapetyan Maxwell Eigenvalues and Discrete Compactness in Two Dimensions, Mathematics and Computers with Applications, 40,4–5, 598–605, 2000.

    MathSciNet  Google Scholar 

  26. L. Demkowicz and L. Vardapetyan, Modeling of Electromagnetic Absorption/Scattering Problems Using hp-Adaptive Finite Elements, Computer Methods in Applied Mechanics and Engineering, 152,1–2, 103–124, 1998.

    Article  MathSciNet  Google Scholar 

  27. R. Hiptmair, Multigrid Method for Maxwell’s Equations., SIAM J. Numer Anal. Vol. 36(l): 204–225, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  28. R. Hiptmair, Canonical Construction of Finite Elements, Mathematics of Computation, 68, 1325–1346, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  29. R. Hiptmair, Higher Order Whitney Forms, Sonderforschungsbereich 382, Universität Tübingen, Report 156, August 2000.

    Google Scholar 

  30. F. Ihlenburg, Finite Element Analysis of Acoustic Scattering, Springer-Verlag, New York, 1998

    Book  MATH  Google Scholar 

  31. F. Kikuchi, Mixed and Penalty Formulations for Finite Element Analysis of an Eigenvalue Problemd in Electromagnetism, Computer Methods in Applied Mechanics and Engineering, 64, 509–521, 1987...

    Article  MathSciNet  MATH  Google Scholar 

  32. F. Kikuchi, On a Discrete Compactness Property for the Nédélec Finite Elements, J. Fac. Sci. Univ. Tokyo Sct. IA Math, 36,3, 479–490, 1989.

    MathSciNet  MATH  Google Scholar 

  33. P.D. Ledger, J. Peraire, K. Morgan, O. Hassa, and N.P. Weatherill, Efficient, Higly Accurate hp Adaptive Finite Element Computations of the Scattering Width Output of Maxwell’s Equations, International Journal for Numerical Methods in Fluids, in print.

    Google Scholar 

  34. J. L. Lions and E. Magenes, Non Homogeneous Boundary Value Problems and Applications, Vol. 1, Springer-Verlag, Berlin 1972.

    Book  Google Scholar 

  35. P. Monk, On the p-and hp-extension of Nédélec’s Curl-Conforming Elements, Journal of Computational and Applied Mathematics, 53, 117–137, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  36. P. Monk, L. Demkowicz, Discrete Compactness and the Approximation of Maxwell’s Equations in doubleIR 3 Mathematics of Computation, 70,234, 507–523, 2000.

    Article  MathSciNet  Google Scholar 

  37. J.C. Nédélec, Mixed Finite Elements in ℝ3, Numerische Mathematik, 35, 315–341, 1980.

    Article  MathSciNet  MATH  Google Scholar 

  38. J.C. Nédélec, A New Family of Mixed Finite Elements in ℝ3, Numerische Mathematik, 50, 57–81, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  39. D. Pardo and L. Demkowicz, Integration of hp-Adaptivity and Multigrid. I. A Two Grid Solver for hp Finite Elements, TICAM Report 02-33.

    Google Scholar 

  40. I. Perugia, D. Schötzau, and P. Monk, Stabilized Interior Penalty Methods for the Time-Harmonic Maxwell Equations, Computer Methods in Applied Mechanics and Engineering, 191,41–42, 4675–4697, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  41. W. Rachowicz and L. Demkowicz, A Two-Dimensional hp-Adaptive Finite Element Package for Electromagnetics (2Dhp90_EM), TICAM Report 98-15, July 1998.

    Google Scholar 

  42. W. Rachowicz, L. Demkowicz, and L. Vardapetyan, hp-Adaptive FE Modeling for Maxwell’s Equations. Evidence of Exponential Convergence ACES' 99, Monterey, CA, March 16-20, 1999.

    Google Scholar 

  43. W. Rachowicz and L. Demkowicz, An hp-Adaptive Finite Element Method for Electromagnetics. Part 1: Data Structure and Constrained Approximation, TICAM Report 98-15 Computer Methods in Applied Mechanics and Engineering, 187,1–2, 307–337, 2000.

    Article  MATH  Google Scholar 

  44. W. Rachowicz and L. Demkowicz, A Three-Dimensional hp-Adaptive Finite Element Package for Electromagnetics, TICAM Report 00-04, February 2000

    Google Scholar 

  45. W. Rachowicz and L. Demkowicz, An hp-Adaptive Finite Element Method for Electromagnetics — Part II: A 3D Implementation, International Journal of Numerical Methods in Engineering, 53, 147–180, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  46. Joachim Schoeberl, Commuting Quasi-interpolation Operators for Mixed Finite Elements, Preprint ISC-01-10-MATH, Texas A&M University, 2001.

    Google Scholar 

  47. Ch. Schwab, p and hp-Finite Element Methods, Clarendon Press, Oxford 1998.

    MATH  Google Scholar 

  48. P. Solin and L. Demkowicz, Goal-Oriented hp-Adaptivity for Elliptic Problems, TICAM Report 02-32, August 2002.

    Google Scholar 

  49. P. P. Silvester, and G. Pelosi (eds.). Finite Elements for Wave Electromagnetics, IEEE Press, Piscatawy, NJ, 1994.

    Google Scholar 

  50. L. Vardapetyan and L. Demkowicz, hp-Adaptive Finite Elements in Electromagnetics, Computers Methods in Applied Mechanics and Engineering, 169, 331–344, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  51. L. Vardapetyan, and L. Demkowicz, Full-Wave Analysis of Dielectric Waveguides at a Given Frequency, Mathematics of Computation, 72, 105–129, 2002.

    Article  MathSciNet  Google Scholar 

  52. L. Vardapetyan, L. Demkowicz, and D. Neikirk, Hp Vector Finite Element Method for Eigenmode Analysis of Waveguides, Computer Methods in Applied Mechanics and Engineering, in print.

    Google Scholar 

  53. J. Wang, N. Ida, Curvilinear and Higher-Order Edge Elements in Electromagnetic Field Computation, IEEE Trans. Magn., 29, 1491–1494, 1993.

    Article  Google Scholar 

  54. Y. Wang, P. Monk, and B. Szabo, Computing Cavity Modes Using the p Version of the Finite Element Method, IEEE Transaction on Magnetics, 32,3, 1934–1940, 1996.

    Article  Google Scholar 

  55. J. Wang, and J.P. Webb, Hierarchical Vector Boundary Elements and p-Adaption for 3-D Electromagnetic Scattering, IEEE Transactions on Antennas and Propagation, 45, 12, 1997.

    Article  Google Scholar 

  56. J. P. Webb, and B. Forghani, Hierarchical Scalar and Vector Tetrahedra, IEEE Trans. Mag., 29, 2, 1295–1498, 1993.

    Google Scholar 

  57. J. P. Webb, Hierarchical Vector Based Funtions of Arbitrary Order for Triangular and Tetrahedral Finite Elements, IEEE Antennas Propagat. Mag., 47,8, 1244–1253, 1999.

    Article  MATH  Google Scholar 

  58. H. Whitney, Geometric Integration Theory, Princeton University Press, 1957.

    Google Scholar 

  59. Dong Xue and L. Demkowicz, Geometrical Modeling Package. Version 2.0, TICAM Report 02-30, August 2002.

    Google Scholar 

  60. A. Zdunek, W. Rachowicz, A Three-dimensional hp-Adaptive Finite Element Approach to Radar Scattering Problems, Presented ad Fifth World Congress on Computational Mechanics, Vienna, Austria, 7–12 July, 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Demkowicz, L. (2003). hp-Adaptive Finite Elements for Time-Harmonic Maxwell Equations. In: Ainsworth, M., Davies, P., Duncan, D., Rynne, B., Martin, P. (eds) Topics in Computational Wave Propagation. Lecture Notes in Computational Science and Engineering, vol 31. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55483-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55483-4_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00744-9

  • Online ISBN: 978-3-642-55483-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics