Skip to main content

Fast, High-Order, High-Frequency Integral Methods for Computational Acoustics and Electromagnetics

  • Chapter
Topics in Computational Wave Propagation

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 31))

Abstract

We review a set of algorithms and methodologies developed recently for the numerical solution of problems of scattering by complex bodies in three-dimensional space. These methods, which are based on integral equations, high-order integration, Fast Fourier Transforms and highly accurate high-frequency integrators, can be used in the solution of problems of electromagnetic and acoustic scattering by surfaces and penetrable scatterers — even in cases in which the scatterers contain geometric singularities such as comers and edges. All of the solvers presented here exhibit high-order convergence, they run on low memories and reduced operation counts, and they result in solutions with a high degree of accuracy. In particular, our approach to direct solution of integral equations results in algorithms that can evaluate accurately in a personal computer scattering from hundred-wavelength-long objects — a goal, otherwise achievable today only by super-computing. The high-order high-frequency methods we present, in turn, are efficient where our direct methods become costly, thus leading to an overall computational methodology which is applicable and accurate throughout the electromagnetic spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. R. Aberegg and A. F. Peterson, Application of the integral equation-asymptotic phase method to two-dimensional scattering. IEEE Transactions on Antennas and Propagation 43 534–537 (1995).

    Article  Google Scholar 

  2. M. Abramowitz and I. Stegun Handbook of mathematical functions with formulas, graphs, and mathematical tables, US Dept Commerce (June 1964).

    Google Scholar 

  3. C. R. Anderson, An implementation of the fast raultipole method without multlpoles, SIAM J. Sci. Stat. Comput. 13, 923–947 (1992).

    Article  MATH  Google Scholar 

  4. C. M. Bender and S. A. Orszag, Advanced Mathematical Methods for Scientists and Engineers, McGraw-Hill (1978).

    Google Scholar 

  5. G. Beylkin, On the fast fourier transform of functions with singularities, Applied Computational Harmonic Analysis, 2 363–381 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  6. N. Bleistein and R.A. Handelsman, Asymptotic expansions of integrals, Dover Publications, New York (1986).

    Google Scholar 

  7. E. Bleszynski, M. Bleszynski, and T. Jaroszewicz, AIM: Adaptive integral method for solving large-scale electromagnetic scattering and radiation problems. Radio Science 31, 1225–1251 (1996).

    Article  Google Scholar 

  8. N. Bojarski, The k-space formulationof the scattering problem in the time domain, J. Acoust. Soc. Am. 72, 570–584 (1982).

    Article  MATH  Google Scholar 

  9. A. Brandt and A. A. Lubrecht, Multilevel matrix multiplication and fast solution of integral equations, J. Comput. Phys. 90, 348–370 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  10. O. P. Bruno and L. A. Kunyansky, A Fast, High-Order Algorithm for the Solution of Surface Scattering Problems: Basic Implementation, Tests, and Applications J. Comput. Phys. 169, 80–110 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  11. O. P. Bruno and L. A. Kunyansky, Surface scattering in 3-D: an accelerated high order solver. Proc. R. Soc. Lond. A 457, 2921–2934 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  12. O. Bruno, C. Geuzaine and A. Monro, Rigorous high-frequency solvers for electromagnetic and acoustic scattering: convex scatterers. In preparation.

    Google Scholar 

  13. O. Bruno and M. Hyde, High order solution of scattering by penetrable bodies. In preparation.

    Google Scholar 

  14. O. Brunoand M. Hyde, bl]A fast high-order method for scattering by three-dimensional inhomgogeneous media. In preparation.

    Google Scholar 

  15. O. P. Bruno and L. A. Kunyansky, High-Order Fourier approximation in Scattering by two-dimensional inhmogeneous media. In preparation.

    Google Scholar 

  16. O. Bruno and M. Pohlman, Fast, High-order surface representation of smooth and singular surfaces. In preparation.

    Google Scholar 

  17. O. Bruno and R. Paffenroth, Fasster: A fast, parallel, high-order surface scattering solver. In preparation.

    Google Scholar 

  18. O. Bruno and F. Reitich, A fast high-order algorithm for evaluation of electromagnetic scattering from thin penetrable bodies. In preparation.

    Google Scholar 

  19. O. Bruno and F. Reitich, Rigorous high-frequency solvers for electromagnetic and acoustic scattering: non-convex scatterers and multiple scattering. In preparation.

    Google Scholar 

  20. O. Bruno and F. Reitich, Numerical solution of diffraction problems: a method of variation of boundaries I, II, III, J. Opt. Soc. A 10, 1168–1175, 2307–2316, 2551–2562 (1993).

    Article  Google Scholar 

  21. O. Bruno and A. Sei, A high order solver for problems of scattering by heterogeneous bodies, Proc. of the 13-th Annual Review of Progress in Applied Computational Electromagnetism (Applied Computational Electromagnetics Society), 1296–1302 (1997)

    Google Scholar 

  22. O. Bruno and A. Sei, A fast high-order solver for EM scattering from complex penetrable bodies: TE case; IEEE Trans. Antenn. Propag. 48, 1862–1864 (2000).

    Article  MathSciNet  Google Scholar 

  23. O. Bruno and A. Sei, A fast high-order solver for problems of scattering by heterogeneous bodies; To appear in IEEE Trans. Antenn.Propag.

    Google Scholar 

  24. O. Bruno, A. Sei and M. Caponi, High-order high-frequency solution of rough surface scattering problems. Radio Science 37, 2-1–3–2-13 (2002).

    Article  Google Scholar 

  25. L. Canino, J. Ottusch, M. Stalzer, J, Visher and S. Wandzura, Numerical solution of the Helmholtz equation using a High-Order Nystrom Discretization, J. Comp. Phys. 146, 627–663 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  26. M. F. Catedra, E. Cago, and L. Nuno, A Numerical Scheme to Obtain the RCS of Three-Dimensional Bodies of Resonant Size Using the Conjugate Gradient Method and the Fast Fourier Transform, IEEE Trans. Antennas Propag. 37, 528–537 (1989).

    Article  Google Scholar 

  27. R. Coifman, V. Rokhlin, and S. Wandzura, The Fast Multipole Method for the Wave Equation: A Pedestrian Prescription, IEEE Antennas and Propagation Magazine 35, 7–12, (1993).

    Article  Google Scholar 

  28. D. Colton and R. Kress, Inverse acoustic and electromagnetic scattering theory, Springer-Veriag, Berlin/Heidelberg (1998).

    MATH  Google Scholar 

  29. R. Courant and D. Hilbert, Methods of mathematical physics, Wiley (1953).

    Google Scholar 

  30. I. Daubechies, I. Guskov, P. Schröder and W. Sweldens, Wavelets on irregular point sets Phil. Trans. R. Soc. Lond. A 357, 2397–2413 (1999).

    Article  MATH  Google Scholar 

  31. B. Dembart and E. Yip, The accuracy of Fast Multipole Methods for Maxwell’s Equations, IEEE Computational Science and Engineering 4, 48–56 (1998).

    Article  Google Scholar 

  32. M. Desbrun, M. Meyer and P. Alliez, Intrinsic Parametrizations of Surface Meshes, Eurographics 2002 21, G. Drettakis and H. P Seidel, Eds. (2002).

    Google Scholar 

  33. J. W. Duijndam and M. A. Schonewille, Nonuniform fast Fourier transform, Geophysics 64 (1999).

    Google Scholar 

  34. A. Dutt and V. Rokhlin, Fast fourier transforms for nonequispaced data, SIAM Journal of Scientific Computing, 14 1368–1393 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  35. A. Dutt and V. Rokhlin. Fast Fourier transforms for nonequispaced data, ii. Applied and Computational Harmonic Analysis, 2 85–100 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  36. M. Epton and B. Dembart, Multipole Translation Theory for the Three-Dimensional Laplace and Helmholtz Equations, SIAM J. Sci. Comput. 16, 865–897, (1995).

    Article  MathSciNet  MATH  Google Scholar 

  37. L. B. Felsen and N. Marcuvitz, Radiation and Scattering of Waves, Prentice-Hall (1973).

    Google Scholar 

  38. V. A. Fock, Electromagnetic Diffraction and Propagation Problems. Elmsford, NY, Pergamon (1965).

    Google Scholar 

  39. G. Liu and S. Gedney, High-order Nyström solution of the volume EFIE for TM-wave scattering, Microwave and Optical Technology Letters 25, 8–11 (2000).

    Article  Google Scholar 

  40. G. H. Golub and C. F. Van Loan, Matrix Computations (Second Ed.), John Hopkins (1993).

    Google Scholar 

  41. A. Greenbaum, L. Greengard and G. McFadden, Laplace equation and the Dirichlet-Neumann map in multiply connected domains. J. Comput. Phys. 105, 267–278 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  42. L. Greengard, J. F. Huang, V. Rokhlin, and S. Wandzura, Accelerating fast multipole methods for the Helmholtz equation at low frequencies, IEEE Comput. Sci. Eng. 5, 32–38 (1998).

    Article  Google Scholar 

  43. M. Hyde and O. Bruno, Two-dimensional scattering by an inhomogeneous medium. In preparation.

    Google Scholar 

  44. R. M. James, A contribution to scattering calculation for small wavelengths—the high frequency panel method, IEEE Transactions on Antennas and Propagation, 38 1625–1630 (1990).

    Article  Google Scholar 

  45. J. B. Keller and R. M. Lewis, Asymptotic methods for partial differential equations: the reduced wave equation and Maxwell’s equations. Vol. I of Surveys in Applied Mathematics, pp. 1–82, Plenum Press, New York (1995).

    Google Scholar 

  46. L. A. Kunyansky and O. P. Bruno, A Fast, High-Order Algorithm for the Solution of Surface Scattering Problems II. Theoretical considerations. Submitted.

    Google Scholar 

  47. C. Labreuche, A convergence theorem for the fast multipole method for 2 dimensional scattering problems. Mathematics of computation 67, 553–591 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  48. R. T. Ling, Numerical solution for the scattering of sound waves by a circular cylinder, AIAA Journal. 25 560–566 (1987).

    Article  Google Scholar 

  49. E. Martensen, Über eine methode zum räumhchen Neumannschen problem mit einer anwendung für torusartige berandungen, Acta Math. 109, 75–135 (1963).

    Article  MathSciNet  MATH  Google Scholar 

  50. J. R. Mautz and R. F. Harrington, A combined-source solution for radiation and scattering from a perfectly conducting body, IEEE Transactions on Antennas and Propagation, AP-27 445–454 (1979).

    Article  Google Scholar 

  51. J. R. Phillips and J. K. White, A Precorrected-FFT Method for Electrostatic Analysis of Complicated 3-D Structures, IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems 16, 1059–1072 (1997).

    Article  Google Scholar 

  52. V. Rokhlin, Rapid solution of integral equations of classical potential theory, J. Comput. Phys. 60, 187–207 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  53. V. Rokhlin, Rapid solution of integral equations of scattering theory in two dimensions, J. Comput. Phys. 86, 414–439 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  54. V. Rokhlin, Diagonal Form of Translation Operators for the Helmholtz equation in Three Dimensions, Applied and Computational Harmonic Analysis 1, 82–93 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  55. Y. Saad and M.H. Schultz, GMRES: a generalized minimal residual algorithm for solving non-symmetric linear systems. SIAM J. Sci. Statist. Comput. 7, 857–869 (1986).

    MathSciNet  Google Scholar 

  56. J. M. Song, C. C. Lu, W. C. Chew, and S. W. Lee, Fast Illinois Solver Code (FISC), IEEE Antenna and Propagation Magazine 40, 27–34 (1998).

    Article  Google Scholar 

  57. J. M. Song, C. C. Lu, and W. C. Chew, Multilevel Fast Muhipole Algorithm for Electromagnetic Scattering by Large Complex Objects, IEEE Trans. Antennas Propag. 45, 1488–1493 (1997).

    Article  Google Scholar 

  58. G. M. Vainikko, Fast solvers of the Lippmann-Schwinger equation, in Direct and Inverse Problems of Mathematical Physics, R. P. Gilbert and J. Kajiwara and Y. S, Xu Eds. (2000).

    Google Scholar 

  59. A.G. Voronovich, Wave scattering from rough surfaces. Springer-Veriag, Berlin (1994).

    Book  MATH  Google Scholar 

  60. A. C. Woo, H. T. G. Wang, M. J. Schuh, and M. L. Sanders, Benchmark Radar Targets for the Validation of Computational Electromagnetics Programs, IEEE Antennas and Propagation Magazine 35, 84–89 (1993).

    Article  Google Scholar 

  61. X. M. Xu and Q. H. Liu, Fast spectral-domain method for acoustic scattering problems, IEEE Trans. Ultrasonics, Ferroelectrics, and Frequency Control 48, 522–529 (2001).

    Article  Google Scholar 

  62. P. Zwamborn and P. Van den Berg, Three dimensional weak form of the conjugate gradient EFT method for solving scattering problems, IEEE Trans. Microwave Theory Tech. 40, 1757–1766 (1992).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bruno, O.P. (2003). Fast, High-Order, High-Frequency Integral Methods for Computational Acoustics and Electromagnetics. In: Ainsworth, M., Davies, P., Duncan, D., Rynne, B., Martin, P. (eds) Topics in Computational Wave Propagation. Lecture Notes in Computational Science and Engineering, vol 31. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55483-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55483-4_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00744-9

  • Online ISBN: 978-3-642-55483-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics