Skip to main content

Mikronährstoffe und Gehirn

  • Chapter
  • First Online:
Mikronährstoffe als Motor der Evolution
  • 5046 Accesses

Zusammenfassung

Wie bereits bei der Beschreibung der Variabilitäts-Selektions-Hypothese erörtert sind es die immer wiederkehrenden Herausforderungen durch Schwankungen der Umweltbedingungen im Habitat, die zur natürlichen Selektion einer Spezies beitragen, die an diese Veränderungen über längere Zeiträume am besten adaptiert ist. Im Fall der kognitiven Entwicklung sind es Ereignisse, die zu einer starken Beanspruchung mentaler Prozesse führen und zu einer entsprechenden Reaktion des Individuums beitragen. Auch hier ist eine schrittweise natürliche Selektion denkbar.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Ahmed T, Hossain M, Sanin K (2012) Global burden of maternal and child undernutrition and micronutrient deficiencies. Ann Nutr Metab 61:8–17

    Article  CAS  PubMed  Google Scholar 

  • Aiello LC, Dunbar RIM (1993) Neocortex size, group size, and the evolution of language. Curr Anthropol 34:184–193

    Article  Google Scholar 

  • Algarin C (2003) Iron deficiency anemia in infancy: long lasting effects on auditory- and visual system functioning. Pediatr Res 53:217–221

    Article  CAS  PubMed  Google Scholar 

  • Alzoubi KH, Alkadhi KA (2007) A critical role of CREB in the impairment of late phase LTP by adult onset hypothyroidism. Exp Neurol 203:63–71

    Article  CAS  PubMed  Google Scholar 

  • Ashworth CJ, Antipas C (2001) Micronutrient programming of development through gestation. Reproduction 122:527–535

    Article  CAS  PubMed  Google Scholar 

  • Azizi F, Sarshar A, Nafarabadi M et al (1993) Impairment of neuromotor and cognitive development in iodine-deficient schoolchildren with normal physical growth. Acta Endocrinol 129:497

    Google Scholar 

  • Balion C et al (2012) Vitamin D, cognition and dementia. Neurology 79:1397–1405

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Barger N et al (2014) Evidence for evolutionary specialization in human limbic structures. Front Hum Neurosci 8:277

    Article  PubMed Central  PubMed  Google Scholar 

  • Beard J (2003) Iron deficiency alters brain development and function. J Nutr 133:1468–1472

    Google Scholar 

  • Bhatnagar S, Taneja S (2001) Zinc and cognitive development. Br J Nutr 85:139–145

    Article  Google Scholar 

  • Black MM, Baqui AH, Zaman K et al (2004) Iron and zinc supplementation promote motor development and exploratory behavior among Bangladeshi infants. Am J Clin Nutr 80:903–910

    Google Scholar 

  • Bodnar LM, Simhan HN, Powers RW et al (2007) High prevalence of vitamin D insufficiency in black and white pregnant women residing in the northern United States and their neonates. J Nutr Feb 137(2):447–452

    Google Scholar 

  • Bonhomme D et al (2014) Retinoic acid modulates intrahippocampal levels of corticosterone in middle aged mice: consequences on hippocampal plasticity and contextual memory. Front Neurosci 6:6. doi:10.3389/fnagi.2014.00006

    Google Scholar 

  • Bonnet E et al (2008) Retinoci acid restores hippocampal neurogenesis and reverses spatial memory deficit in vitamin A deprived rats. Plos One 3(10):e3487

    Article  PubMed Central  PubMed  Google Scholar 

  • Burden MJ, Westerlund BA, Armony-Sivan R et al (2007) An event related potential study of attention and recognition memory in infants with iron-deficient anemia. Pediatrics 120:336–342

    Article  Google Scholar 

  • Carlson ES, Stead JD, Neal CR, Petryk A, Georgieff MK (2007) Perinatal iron deficiency results in altered developmental expression of genes mediating energy metabolism and neuronal morphogenesis in hippocampus. Hippocampus 17(8):679–691

    Article  Google Scholar 

  • Chung H et al (2013) Multiple signalling pathways mediate ghrelin induced proliferation of hippocampal neural stem cells. J Endocrinol 218:49–59

    Article  CAS  PubMed  Google Scholar 

  • Coqueugniot H et al (2004) Early brain growth in Homo erectus and implications for cognitive ability. Nature 431:299–302

    Article  CAS  PubMed  Google Scholar 

  • Corniola RS et al (2008) Zinc deficiency impairs neuronal precursor cell proliferation and induces apoptosis via p53 mediated mechanisms. Brain Res 1237:52–61

    Article  CAS  PubMed  Google Scholar 

  • Craciunesco CN et al (2010) Dietary choline reserves some but not all effects of folate deficiency on neurogenesis and apoptosis in fetal mouse brain. J Nutr 140:1162–1166

    Article  Google Scholar 

  • Cunnane SC, Crawford MA (2014) Energetic and nutritional on infant brain development: Implications for brain expansion during human evolution. J. Hum. Evol 71: 88–98

    Google Scholar 

  • Zhang D et al (2010) Adiponectin stimulates proliferation of adult hippocampal neural stem/progenitor cells. J Biol Chem 286:44913–44920

    Article  Google Scholar 

  • Dunbar RIM (1998) The social brain hypothesis. Evol Anthropol 6:178–190

    Article  Google Scholar 

  • Endan L et al (2013) Ghrelin directly stimulates adult hippocampal neurogenesis: implications for learning and memory. Endocrine J 60:781–789

    Google Scholar 

  • Etchamendy N et al (2003) Vitamin A deficiency and relational memory deficit in adult mice: relationship with changes in brain retinoid signalling. Behav Brain Res 145:37–49

    Article  CAS  PubMed  Google Scholar 

  • Eyles DW et al (2005) Distribution of Vitamin D Receptor and 1-α-hydroxylase in human brain. J Chem Neuroanat 29:21–30

    Article  CAS  PubMed  Google Scholar 

  • Eyles D et al (2007) Developmental vitamin D deficiency alters the expression of genes encoding mitochondrial, cytoskeletal and synaptic proteins in the adult rat brain. J Steroid Biochem Mol Biol 103:538–545

    Article  CAS  PubMed  Google Scholar 

  • Fragoso YD et al (2012) High expression of retinoic acid receptors and synthetic enzymes in the human hippocampus. Brain Struct Funct 271:473–483

    Article  Google Scholar 

  • Fretham SJB et al (2011) The role of iron in learning and memory. Adv Nutr 2:112–121

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fuglestad A, Ramel SE, Georgieff MK (2010) Micronutrient needs of the developing brain: priorities and assessment. In: Packer L et al (eds) Micronutrients and brain health. Taylor and Francis, Boca Raton

    Google Scholar 

  • Georgieff MK (2011) Long-term brain and behavioral consequences of early iron deficiency. Nutr Rev 69:43–48

    Article  Google Scholar 

  • Ghenimi N et al (2009) Vitamin A deficiency in rats induces anatomic and metabolic changes comparable with those of neurodegenerative disorders. J Nutr 139:1–7

    Article  Google Scholar 

  • Golini RS et al (2012) Daily patterns of clock and cognition related factors are modified in the hippocampus of vitamin A-deficient rats. Hippocampus 22:1720–1732

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gong J et al (2010) Developmental iodine deficiency and hypothyroidism impair neural development in rat hippocampus: involvement of doublecortin and NCAM-180. Neuroscience 11:50–59

    PubMed Central  PubMed  Google Scholar 

  • Gower-Winter SD et al (2013) Zinc deficiency regulates hippocampal gene expression and impairs neuronal differentiation. Nutr Neurosci 16:174–182

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Groves N et al (2014) Vitamin D as a neurosteroid affecting the developing and adult brain. Ann Rev Nutr 34:117–141

    Article  CAS  Google Scholar 

  • Gueant JL et al (2013) Molecular and cellular effects of vitamin B12 in brain, myocardium and liver through its role as a co-factor of methionine synthetase. Biochimie 95:1033–1040

    Article  CAS  PubMed  Google Scholar 

  • Hanson J et al (2011) Association between income and the Hippocampus. Plos One 6:e18712

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Harms LR et al (2011) Vitamin D and the brain. Clin Endcrinol Metabol 25:657–669

    CAS  Google Scholar 

  • Hediger MA et al (2013) The ABCs of membrane transporters in health and disease. Ann Rev Nutr 34:217–244

    Google Scholar 

  • Hou N et al (2014a) Vitamin A deficiency impairs spatial learning and memory. Mol Neurobiol 24:236–244

    Google Scholar 

  • Hou N et al (2014b) Vitamin A deficiency impairs spatial learning and memory: the mechanism of abnormal CBP-dependent histone acetylation regulated by retinoic acid receptor alpha. Mol Neurobiol 21:17–24

    Google Scholar 

  • Houston JL, Chandra A, Wolfe B, Pollak SD (2011) Association between income and the hippocampus. Plos One 6:19712

    Article  Google Scholar 

  • Husson M et al (2003) Trijodthyronin administration reverses vitamin A-deficiency related hypoexpression of retinoic acid and trijodthyronine nuclear receptors and of neurogranin in the rat brain. Br J Nutr 90:191–198

    Article  CAS  PubMed  Google Scholar 

  • Husson M et al (2004) Expression of neurogranin and neuromodulin is affected in the striatum of vitamin A deprived rats. Br Res Mol Br Res 123:7–17

    Article  CAS  Google Scholar 

  • Iniguez MA et al (1996) Cell-specific effect of thyroid hormone on RC3/neurogranin expression in rat brain. Endocrinology 137:1032–1041

    CAS  PubMed  Google Scholar 

  • Janmaat KRL et al (2014) Wild chimpanzees plan their breakfast time, type and location. PNAS Early Edition 1–6

    Google Scholar 

  • Jednorog K, Altarelli I, Monzalvo K et al (2012) The influence of socioeconomic status on childrens brainstructure. Plos One 7:42486

    Article  Google Scholar 

  • Jiang YG et al (2011) Depressed hippocampal MEK/ERK phosphorylation correlates with impaired cognitive and synaptic function in zinc deficient rats. Nutr Neurosci 14:45–50

    Article  CAS  PubMed  Google Scholar 

  • Joels M, Krugers H (2007) LTP after stress: up or down? Neural Plast 2007:93202

    Google Scholar 

  • Jorgenson LA et al (2005) Fetal iron deficiency disrupts the maturation of synaptic function and efficacy in area CA1 of the developing rat hippocampus. Hippocampus 15:1094–1102

    Article  CAS  PubMed  Google Scholar 

  • Kirksey A et al (1994) Relation of maternal zinc nutriture to pregnancy outcome and infant development in an Egyptian village. Am J Clin Nutr 60:782–791

    CAS  PubMed  Google Scholar 

  • Leigh SR (2004) Brain growth, life history, and cognition in primate and human evolution. Am J Primatol 62:139–164

    Article  CAS  PubMed  Google Scholar 

  • Leonard WR, Snodgrass JJ, Robertson ML (2010) Evolutionary perspectives of fat ingestion and metabolism in humans. In: Montmayeur JP, Coutre J le (eds) Fat detection: taste, texture and post ingestive effects. CRC, Boca Raton

    Google Scholar 

  • Lozoff B, Georgieff MK (2006) Iron deficiency and brain development. Semin Pediatr Neurol 13:158–165

    Article  PubMed  Google Scholar 

  • Maden M (2007) Retinoic acid in the development, regeneration and maintenance of the nervous system. Nat Rev Neurosci 8:755–765

    Article  CAS  PubMed  Google Scholar 

  • Maguire EA et al (2000) Navigation related structural change in the hippocampi of taxi drivers. PNAS 97:4398–4403

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Maguire EA et al (2006) London Taxi drivers and bus drivers: a structural MRI and neuropsychological analysis. Hippocampus 16:1091–1101

    Article  PubMed  Google Scholar 

  • Martinez Galan JR et al (1997) Early effects of iodine deficiency on radial glial cells of the hippocampus of the rat fetus. A model of neurological cretinism. J Clin Invest 99:2701–2706

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McCaffery P et al (2006) Retinoic acid signalling and function in the adult hippocampus. J Neurobiol 66:780–791

    Article  CAS  PubMed  Google Scholar 

  • McCann J, Ames BN (2008) Is there convincing biological and behavioral evidence linking vitamin D to brain function. FASEB J 22:982–1001

    Article  CAS  PubMed  Google Scholar 

  • Meck WH et al (2003) Metabolic imprinting of choline by its availability during gestation: implications for memory and attentional processing during the lifespan. Neurosci Biobehav Rev 27:385–399

    Article  CAS  PubMed  Google Scholar 

  • Mehedint MG et al (2010) Maternal dietary choline deficiency alters angiogenesis in fetal mouse hippocampus. PNAS 107:12834–12839

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Morales E et al (2012) Circulating 25-hydroxyvitamin D3 in pregnancy and infant neuropsychological development. Pediatrics 13:913–920

    Article  Google Scholar 

  • Moser EI, Moser M (2008) A metric for space. Hippocampus 18:1142–1156

    Article  Google Scholar 

  • Noble KG, Houston SM, Kan E, Sowell ER (2012) Neural correlates of socio-economic status in the developing human brain. Dev Sci 15:71–78

    Article  Google Scholar 

  • Nomoto M et al (2012) Dysfunction of RAR/RXR signalling pathway in the forebrain impairs hippocampal memory and synaptic plasticity. Mol Brain 5:8. doi:10.1186/1756-6606-5-8

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nyaradi A et al (2013) The role of nutrition in childrens neurocognitive development, from pregnancy through childhood. Front Hum Neurosci 7:123–131

    Article  Google Scholar 

  • Olson CR, Mello CV (2010) Significance of vitamin A to brain function, behavior and learning. Mol Nutr Food Res 54:489–495

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Opazo MC et al (2008) Maternal hypothyroxinemia impairs spatial learning and synaptic nature and function in the offspring. Endocrinol 149:5097–5106

    Article  CAS  Google Scholar 

  • Passingham RE, Wise SP (2012) The neurobiology of the prefrontal cortex. Oxford University Press, Oxford

    Book  Google Scholar 

  • Perez EM et al (2005) Mother-infant interactions and infant development are altered by maternal iron deficiency anemia. Am J Clin Nutr 291:1704–1709

    Google Scholar 

  • van Praag et al (2005) Exercise enhances learning and hippocampal neurogenesis in aged mice. J Neurosci 25:8680–8685

    Article  Google Scholar 

  • Rabl U et al (2014) Additive gene-environment effects on hippocampal structure in healthy humans. J Neurosci 34:9917–9926

    Article  Google Scholar 

  • Radlowski EC, Johnson RW (2013) Perinatal iron deficiency and neurocognitive development. Front Hum Neurosci 7:585

    Article  PubMed Central  PubMed  Google Scholar 

  • Sable P et al (2013) Maternal micronutrients and global methylation patterns in the offspring. Nutr Neurosci 27:83–91

    Google Scholar 

  • Salami M et al (2012) Hippocampal long term potentiation in rats under different regimens of vitamin D: an in vivo study. Neurosci Lett 509:56–59

    Article  CAS  PubMed  Google Scholar 

  • Sand C, Pinelo-Nva M (2007) Stress and memory: behavioral effects and neurobiological mechanisms. Neural Plast 2007:78970

    Google Scholar 

  • Semple BD et al (2013) Brain development in rodents and humans: identifying benchmarks of maturation and vulnerability to injury across species. Progr Neurobiol 30:1–16

    Article  Google Scholar 

  • Shearer KD et al (2012) A vitamin for the brain. Trends Neurosci 35:733–741

    Article  CAS  PubMed  Google Scholar 

  • Siddappa AM et al (2004) Iron deficiency alters auditory recognition memory in newborn infants of diabetic mothers. Ped Res 55:1034–1041

    Article  CAS  Google Scholar 

  • Smith JW et al (2002) Thyroid hormones, brain function and cognition: a brief review. Neurosci Biobehav Rev 26:45–60

    Article  CAS  PubMed  Google Scholar 

  • Smulders RT et al (1995) Seasonal variation in hippocampal volume in a food storing bird, the black-cap chick adee. J Neurobiol 27:15–25

    Article  CAS  PubMed  Google Scholar 

  • Taghizadeh M et al (2014) Vitamin D supplementation restores suppressed synaptic plasticity in Alzheimerʼs disease. Nutr Neurosci 17:172–177

    Article  CAS  PubMed  Google Scholar 

  • Takeda A et al (2001) Zinc homoeostasis in the brain of adult rats fed zinc-deficient diet. J. Nutr 123:41–48

    Google Scholar 

  • Tamura T et al (2002) Cord serum ferritin concentrations and mental and psychomotor development of children at 5 years of age. J Pediatr 14:165–172

    Article  Google Scholar 

  • Touyarot K et al (2013) A mid-life vitamin A supplementation prevents age related spatial memory deficits and hippocampal neurogenesis alterations through CRABP-I. Plos One 8(8):e72101. doi:10.1371/journal.pone.0072101

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Trumpff C et al (2013) Mild iodine deficiency in pregnancy in Europe and its consequences for cognitive and psychomotor development of children. Rev J Trace Elem Med Biol 27:174–183

    Article  CAS  Google Scholar 

  • Tveden-Nyborg P et al (2009) Vitamin C-deficiency in the early postnatal life impairs spatial memory and reduces the number of hippocampal neurons in guinea pigs. Am J Clin Nutr 90:540–546

    Article  CAS  PubMed  Google Scholar 

  • Tveden-Nyborg P et al (2012) Maternal vitamin C deficiency during pregnancy persistently impairs hippocampal neurogenesis in offsprings of guinea pigs. Plos One 7(10):e48488. doi:10.1371/journal.pone.0048488

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • de Ungria M et al (2000) Perinatal iron deficiency decreases cytochrome c oxidase in selective regions of neonatal rat brain. Pediatr Res 48:169–176

    Article  CAS  Google Scholar 

  • Vermiglio F, Sidoti M, Finocchiaro MD et al (1990) Defective neuromotor and cognitive ability in iodine-deficient schoolchildren of an endemic goiter region in Sicily. J Clin Endocrinol Metab 70:379

    Article  CAS  PubMed  Google Scholar 

  • Werner EA, DeLuca HF (2002) Retinoic acid is detected at relatively high levels in the CNS of adult rats. Am J Physiol Endocrin Metab 282:672–678

    Article  Google Scholar 

  • Whitehouse AJ et al (2012) Maternal serum vitamin D levels during pregnancy and offspring neurocognitive development. Pediatrics 129:485–493

    Article  PubMed  Google Scholar 

  • Wi W, Wang Y, Dong J et al (2013) Developmental hypothyroxinemia induced by maternal mild iodine deficiency delays hippocampal axonal growth in the rat offspring. J Neuroendocrinol 25:852–862

    Article  Google Scholar 

  • van Woerden JT et al (2014) Seasonality of diet composition is related to brain size in new world monkeys. Am J Phys Anthropol 154:628–632

    Article  Google Scholar 

  • Wullschleger S et al (2006) TOR signalling in growth and metabolism. Cell 124:471–484

    Article  CAS  PubMed  Google Scholar 

  • Yu X et al (2013) Effects of maternal mild zinc deficiency and zinc supplementation in offspring on spatial memory and hippocampal neuronal ultrastructural changes. Nutrition 29:457–461

    Article  PubMed  Google Scholar 

  • Zainuddin M, Thuret S (2012) Nutrition, adult hippocampal neurogenesis and mental health. Br Med Bull 103:89–114

    Article  PubMed  Google Scholar 

  • Zoeller RT, Rouvet J (2004) Timing of thyroid hormone action in the developing brain: clinical observations and experimental findings. J Neuroendocrinol 16:809–818

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Konrad Biesalski .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Biesalski, H. (2015). Mikronährstoffe und Gehirn. In: Mikronährstoffe als Motor der Evolution. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55397-4_11

Download citation

Publish with us

Policies and ethics