Skip to main content

Der Weg zum Homo sapiens

  • Chapter
  • First Online:
Mikronährstoffe als Motor der Evolution
  • 4873 Accesses

Zusammenfassung

Irgendwann begann das menschliche Gehirn zu wachsen. Aus Sicht der Evolution muss es dafür einen Anlass gegeben haben, das heißt, ein größeres Gehirn muss vorteilhaft gewesen sein. Auf den ersten Blick ist ein größeres Gehirn aber eher ein Nachteil für seinen Besitzer, denn es braucht mehr Energie als ein kleines. Da es in der Beschaffung dieser Energie eher rabiat zu Werke geht, wird die Energie dem Träger an anderer Stelle fehlen, es sei denn, es tun sich neue Energiequellen auf. Wie sahen diese Quellen aus und was hat diese Entwicklung mit dem neuen Lebensraum der Homininen zu tun? Stimmt es wirklich, dass der Mensch durch ein mehr an Fleisch erst wirklich zum Menschen geworden ist? Oder waren es die Mikronährstoffe?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Aiello LC, Wheeler P (1995) The expensive tissue hypothesis. Curr Anthropol 36:199–221

    Article  Google Scholar 

  • Alemseged Z, Bobe R (2009) Diet in early hominin species: a paleoenvironmental perspective. In Hublin JJ, Richards MP (eds) The evolution of hominin diets. Springer, Berlin

    Google Scholar 

  • Bolborea M, Dale N (2013) Hypothalamic tanycytes: potential roles in the control of feeding and energy balance. Trends Neurosci 38:91–100

    Article  Google Scholar 

  • Braun DR et al (2010) Early homin diet included diverse terrestrial and aquatic animals 1.95 Ma in East Turkana, Kenya. PNAS10.1073

    Google Scholar 

  • Broadhurst CL, Wang Y, Crawford MA et al (1998). Rift Valley lake fish and shellfish provided brain-specific nutrition for early Homo. Br J Nutr 79:3–21

    Article  CAS  PubMed  Google Scholar 

  • Carlson B, Kingston JD (2007) Docosahexaenoic acid biosynthesis and dietary contingency: encephalization without aquatic constraint. Am J Hum Biol 19:585–588

    Article  PubMed  Google Scholar 

  • Chen XC et al (1998) Effect of taurine on human fetal neuron cells: proliferation and differentiation. Adv Exp Med Biol Res 125:127–140

    Google Scholar 

  • Cordain L et al (2002) Fatty acid analysis of wild ruminant tissues: evolutionary implications for reducing diet-related diseases. Eur J Clin Nutr 56:181–119

    Article  CAS  PubMed  Google Scholar 

  • Fedrigo O et al (2011) A potential role for glucose transporters in the evolution of human brain size. Brain Behav Evol 78:315–326

    PubMed Central  PubMed  Google Scholar 

  • Fogel R (1993) Economic growth, population theory and physiology: The bearing of long term processes on the making of economic policy. Nobel lecture December 9: Univ. Chicago

    Google Scholar 

  • Gibbons A (2010) Human ancestor caught in the midst of a makeover. Science 328:413

    Article  CAS  PubMed  Google Scholar 

  • Grantham Mc Gregor SA (1995) A review of studies of the effects of severe malnutrition on mental development. J Nutr 125:2233–2238

    Google Scholar 

  • Haygood R et al (2007) Promotor regions of many neutral- and nutrition-related genes have experienced positive selection during human evolution. Nat Gen 39:1140–1144

    Article  CAS  Google Scholar 

  • Hernandez-Benitez R et al (2012) Taurine stimulates proliferation and promotes neurogenesis of mouse adult cultured neural stem/progenitor cells. Stem Cell Res 9:24–34

    Article  CAS  PubMed  Google Scholar 

  • Hibbeln JR, Davis JM (2009) Considerations regarding neuropsychiatric nutritional requirements for intakes of omega-3 highly unsaturated fatty acids. Prostaglandins Leukot Essent Fatty Acids 81:179–186

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Innis SM (2007) Dietary (n3) fatty acids and brain development. J Nutr 137:855–859

    CAS  PubMed  Google Scholar 

  • Lager S, Powell TL (2012) Regulation of nutrient transport across the placenta. J Pregnancy Article ID: 179827

    Google Scholar 

  • Lengqvist J et al (2006) Polyunsaturated fatty acids including docosahexaeonic acid and arachidonic acid bind to the retinoid X receptor alpha ligand binding domain. Mol Cell Proteomics 3:692–703

    Article  Google Scholar 

  • Leonard WR et al (2003) Metabolic correlates of hominid brain evolution. Comp Biochem Physiol A 136:5–15

    Article  Google Scholar 

  • Leonard WR et al (2007) Effects of brain evolution on human nutrition and metabolism. Ann Rev Nutr 27:311–327

    Article  CAS  Google Scholar 

  • Leonard WR, Snodgrass JJ, Robertson ML (2010) Evolutionary perspectives of fat ingestion and metabolism in humans. In: Montmayeur JP, le Coutre J (eds) Fat detection: taste, texture and post ingestive effects. CRC, Boca Raton (FL)

    Google Scholar 

  • Makrides M et al (1995) Are long chain polyunsaturated fatty acids essential nutrients in infancy? Lancet 345:1463–1468

    Article  CAS  PubMed  Google Scholar 

  • Otto SJ et al (2001) Changes in the maternal essential fatty acid profile during early pregnancy and the relation of the profile to diet. Am J Clin Nutr 73:302–307

    CAS  PubMed  Google Scholar 

  • Peters A et al (2004) The selfish brain: competition for energy resources. Neurosci Biobehav Rev 28:143–180

    Article  CAS  PubMed  Google Scholar 

  • Pontzer H et al (2011) Dental microwear texture analysis and diet in the Dmanisi hominins. J Hum Evol 61:683–687

    Article  PubMed  Google Scholar 

  • Quinn RL et al (2013) Pedogenic carbonate stable isotopic evidence for wooded habitat preference of early Pleistocene tool makers in the Turkana Basin. J Hum Evol 65:65–78

    Article  PubMed  Google Scholar 

  • Sailer LD et al (1985) Measuring the relationship between dietary quality and body size in primates. Primates 26:14–27

    Article  Google Scholar 

  • Shivaraj MC et al (2012) Taurine induces proliferation of neural stem cells and synapse development in the developing mouse brain. PloS ONE 7:42935

    Article  Google Scholar 

  • Stewart KM (1994) Early hominid utilisation of fish resources and implications for seasonality and behavior. J Hum Evol 27:229–245

    Article  Google Scholar 

  • Sturman JA (1993) Taurine in development. Physiol Rev 73:119–147

    CAS  PubMed  Google Scholar 

  • Sturman JA, Gaull GE (1975) Taurine in the brain and liver in the developing human and monkey. J Neurochem 25:831–835

    Article  CAS  PubMed  Google Scholar 

  • Super H, Uylings HB (2001) The early differentiation of the neocortex: a hypothesis on neocortical evolution. Cerb Cortex 11:1101–1109

    Article  CAS  Google Scholar 

  • Taylor A, van Schaik CP (2007) Variation in brain size and ecology in Pongo. J Hum Evol 52:59–71

    Article  PubMed  Google Scholar 

  • Thorstensen EB et al (2012) Effects of periconceptional undernutrition on maternal taurine concentrations in sheep. Brit J Nutr 107:466–472

    Article  CAS  PubMed  Google Scholar 

  • Torres N et al (2010) Protein restriction during pregnancy affects maternal liver lipid metabolism and fetal brain lipid composition in the rat. Am J Physiol 298:E270–E277

    Google Scholar 

  • van Woerden JT et al (2010) Effects of seasonality on brain size evolution: evidence from Strepsirrhine primates. Am Nat 176:758–767

    Article  PubMed  Google Scholar 

  • van Woerden JT et al (2011) Large brains buffer energetic effects of seasonal habitats in Catarrhine primates. Evolution 66:191–199

    Article  PubMed  Google Scholar 

  • van Woerden JT et al (2014) Seasonality of diet composition is related to brain size in new world monkeys. Am J Phys Anthropol 154:628–632

    Article  PubMed  Google Scholar 

  • Yamori Y et al (2010) Taurine in health and diseases: consistent evidence from experimental and epidemiological studies. J Biomed Sci 17:S6

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Konrad Biesalski .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Biesalski, H. (2015). Der Weg zum Homo sapiens . In: Mikronährstoffe als Motor der Evolution. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55397-4_10

Download citation

Publish with us

Policies and ethics