Skip to main content

Genomics of Xanthomonas citri and Related Species

  • Chapter
  • First Online:

Abstract

Citrus canker is a devastating disease that affects most commercial citrus varieties. Asiatic type canker is the most widespread and destructive form of citrus canker that is caused by Xanthomonas citri subsp. citri (XccA). Multiple variants of XccA including XccAw and XccA* have been reported. Citrus canker is also known to be caused by X. fuscans subsp. aurantifolii (Xau) B and C strains. XccAw, XccA*, XauB, and XauC, unlike XccA, are limited in host range. The complete genome sequence of XccA strain 306 was sequenced in 2002 using Sanger sequencing. With advances in sequencing technologies, other strains associated with citrus canker were also sequenced recently. Currently, draft sequences of XauB and XauC are available. The complete genome of XccAw strain 12879 has been sequenced, whereas XccA* strain 270 is currently being sequenced. Furthermore, the complete genome of another closely related citrus pathogen, X. axonopodis pv. citrumelo strain F1 causing citrus bacterial spot, has also been sequenced. Multilocus sequence phylogenetic analysis of XccA and other xanthomonads indicates that citrus canker pathogens XccA, XccAw, XauB, and XauC form a closely related group. In this review, the following topics were included: an introduction about citrus canker including the origin of citrus canker, its current distribution, economic losses, infection cycle; current understanding of the virulence mechanisms of XccA; genome information of XccA and related species; genome-enabled understanding of X. citri virulence and host specificity; and transcriptomics of X. citri. The advent of next generation sequencing will dramatically promote the genomic study of X. citri and investigation of the virulence mechanisms of X. citri to design innovative strategies to control citrus canker and other bacterial diseases.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Al-Saadi A, Reddy JD, Duan YP, Brunings AM, Yuan Q, Gabriel DW (2007) All five host-range variants of Xanthomonas citri carry one pthA homolog with 17.5 repeats that determines pathogenicity on citrus, but none determine host-range variation. Mol Plant Microbe Interact 20:934–943

    CAS  PubMed  Google Scholar 

  • Alegria MC, Docena C, Khater L, Ramos CHI, da Silva ACR, Farah CS (2004) New protein-protein interactions identified for the regulatory and structural components and substrates of the type III secretion system of the phytopathogen Xanthomonas axonopodis pathovar citri. J Bacteriol 186:6186–6197

    CAS  PubMed Central  PubMed  Google Scholar 

  • Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11:R106

    CAS  PubMed Central  PubMed  Google Scholar 

  • Andrade MO, Alegria MC, Guzzo CR, Docena C, Pareda Rosa MC, Ramos CHI, Farah CS (2006) The HD-GYP domain of RpfG mediates a direct linkage between the Rpf quorum-sensing pathway and a subset of diguanylate cyclase proteins in the phytopathogen Xanthomonas axonopodis pv citri. Mol Microbiol 62:537–551

    CAS  PubMed  Google Scholar 

  • Aslam SN, Newman M-A, Erbs G, Morrissey KL, Chinchilla D, Boller T, Jensen TT, De Castro C, Ierano T, Molinaro A (2008) Bacterial polysaccharides suppress induced innate immunity by calcium chelation. Curr Biol 18:1078–1083

    CAS  PubMed  Google Scholar 

  • Astua-Monge G, Freitas-Astua J, Bacocina G, Roncoletta J, Carvalho SA, Machado MA (2005) Expression profiling of virulence and pathogenicity genes of Xanthomonas axonopodis pv. citri. J Bacteriol 187:1201–1205

    CAS  PubMed Central  PubMed  Google Scholar 

  • Astua-Monge G, Minsavage GV, Stall RE, Davis MJ, Bonas U, Jones JB (2000) Resistance of tomato and pepper to T3 strains of Xanthomonas campestris pv. vesicatoria is specified by a plant-inducible avirulence gene. Mol Plant Microbe Interact 13:911–921

    CAS  PubMed  Google Scholar 

  • Barber C, Tang J, Feng J, Pan M, Wilson T, Slater H, Dow J, Williams P, Daniels M (1997) A novel regulatory system required for pathogenicity of Xanthomonas campestris is mediated by a small diffusible signal molecule. Mol Microbiol 24:555–566

    CAS  PubMed  Google Scholar 

  • Behlau F, Belasque J, Bergamin Filho A, Graham J, Leite R, Gottwald T (2008) Copper sprays and windbreaks for control of citrus canker on young orange trees in southern Brazil. Crop Protect 27:807–813

    CAS  Google Scholar 

  • Behlau F, Belasque J, Graham J, Leite R (2010) Effect of frequency of copper applications on control of citrus canker and the yield of young bearing sweet orange trees. Crop Protect 29:300–305

    CAS  Google Scholar 

  • Boch J, Bonas U (2010) Xanthomonas AvrBs3 family-type III effectors: discovery and function. Annu Rev Phytopathol 48:419–436

    CAS  PubMed  Google Scholar 

  • Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U (2009) Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326:1509–1512

    CAS  PubMed  Google Scholar 

  • Boon C, Deng Y, Wang L-H, He Y, Xu J-L, Fan Y, Pan SQ, Zhang L-H (2007) A novel DSF-like signal from Burkholderia cenocepacia interferes with Candida albicans morphological transition. ISME J 2:27–36

    PubMed  Google Scholar 

  • Brunings A, Gabriel D (2003) Xanthomonas citri: breaking the surface. Mol Plant Pathol 4:141–157

    CAS  PubMed  Google Scholar 

  • Büttner D, He SY (2009) Type III protein secretion in plant pathogenic bacteria. Plant Physiol 150:1656–1664

    PubMed Central  PubMed  Google Scholar 

  • Canteros B (2004) Management of citrus canker in Argentina. A review. In: Proceedings of international society citriculture

    Google Scholar 

  • Casabuono A, Petrocelli S, Ottado J, Orellano EG, Couto AS (2011) Structural analysis and involvement in plant innate immunity of Xanthomonas axonopodis pv. citri lipopolysaccharide. J Biol Chem 286:25628–25643

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chatterjee S, Wistrom C, Lindow SE (2008) A cell–cell signaling sensor is required for virulence and insect transmission of Xylella fastidiosa. Proc Natl Acad Sci USA 105:2670–2675

    CAS  PubMed Central  PubMed  Google Scholar 

  • Civerolo EL (1984) Bacterial canker disease of citrus. J Rio Grande Valley Hort Assoc 37:127–146

    Google Scholar 

  • Colnaghi Simionato AV, da Silva DS, Lambais MR, Carrilho E (2007) Characterization of a putative Xylella fastidiosa diffusible signal factor by HRGC-EI-MS. J Mass Spectrom 42:490–496

    PubMed  Google Scholar 

  • Cubero J, Graham JH (2002) Genetic relationship among worldwide strains of Xanthomonas causing canker in citrus species and design of new primers for their identification by PCR. Appl Environ Microbiol 68:1257–1264

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cuthbertson L, Kimber M, Whitfield C (2007) Substrate binding by a bacterial ABC transporter involved in polysaccharide export. Proc Natl Acad Sci USA 104:19529–19534

    CAS  PubMed Central  PubMed  Google Scholar 

  • da Silva A, Ferro J, Reinach F, Farah C, Furlan L, Quaggio R, Monteiro-Vitorello C, Van Sluys M, Almeida N, Alves L (2002) Comparison of the genomes of two Xanthomonas pathogens with differing host specificities. Nature 417:459–463

    PubMed  Google Scholar 

  • Danhorn T, Fuqua C (2007) Biofilm formation by plant-associated bacteria. Annu Rev Microbiol 61:401–422

    CAS  PubMed  Google Scholar 

  • Das A (2003) Citrus canker-A review. J Appl Hort 5:52–60

    Google Scholar 

  • Daubin V, Ochman H (2004) Bacterial genomes as new gene homes: the genealogy of ORFans in E. coli. Genome Res 14:1036–1042

    CAS  PubMed Central  PubMed  Google Scholar 

  • de Kievit T, Iglewski B (2000) Bacterial quorum sensing in pathogenic relationships. Infect Immun 68:4839

    PubMed Central  PubMed  Google Scholar 

  • Dekkers LC, Bloemendaal CJP, de Weger LA, Wijffelman CA, Spaink HP, Lugtenberg BJJ (1998) A two-component system plays an important role in the root-colonizing ability of Pseudomonas fluorescens strain WCS365. Mol Plant Microbe Interact 11:45–56

    CAS  PubMed  Google Scholar 

  • Dopson R (1964) The eradication of citrus canker. Plant Dis Reporter 48:30–31

    Google Scholar 

  • Dow J, Osbourn A, Wilson T, Daniels M (1995) A locus determining pathogenicity of Xanthomonas campestris is involved in lipopolysaccharide biosynthesis. Mol Plant Microbe Interact 8:768–777

    CAS  PubMed  Google Scholar 

  • Dow M (2008) Diversification of the function of cell-to-cell signaling in regulation of virulence within plant pathogenic xanthomonads. Sci Signal 1:pe23. doi:10.1126/stke.121pe23

    PubMed  Google Scholar 

  • Duan Y, Castaneda A, Zhao G, Erdos G, Gabriel D (1999) Expression of a single, host-specific, bacterial pathogenicity gene in plant cells elicits division, enlargement, and cell death. Mol Plant Microbe Interact 12:556–560

    CAS  Google Scholar 

  • El Yacoubi B, Brunings A, Yuan Q, Shankar S, Gabriel D (2007) In planta horizontal transfer of a major pathogenicity effector gene. Appl Environ Microbiol 73:1612–1621

    PubMed Central  PubMed  Google Scholar 

  • Fenselau S, Bonas U (1995) Sequence and expression analysis of the hrpB pathogenicity operon of Xanthomonas campestris pv. vesicatoria which encodes eight proteins with similarity to components of the Hrp, Ysc, Spa, and Fli secretion systems. Mol Plant Microbe Interact 8:845–854

    CAS  PubMed  Google Scholar 

  • Figurski DH, Helinski DR (1979) Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc Natl Acad Sci USA 76:1648–1652

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fouhy Y, Scanlon K, Schouest K, Spillane C, Crossman L, Avison MB, Ryan RP, Dow JM (2007) Diffusible signal factor-dependent cell-cell signaling and virulence in the nosocomial pathogen Stenotrophomonas maltophilia. J Bacteriol 189:4964–4968

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fujikawa T, Ishihara H, Leach JE, Tsuyumu S (2006) Suppression of defense response in plants by the avrBs3/pthA gene family of Xanthomonas spp. Mol Plant Microbe Interact 19:342–349

    CAS  PubMed  Google Scholar 

  • Furutani A, Tsuge S, Ohnishi K, Hikichi Y, Oku T, Tsuno K, Inoue Y, Ochiai H, Kaku H, Kubo Y (2004) Evidence for HrpXo-dependent expression of type II secretory proteins in Xanthomonas oryzae pv. oryzae. J Bacteriol 186:1374–1380

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gabriel D, Kingsley M, Hunter J, Gottwald T (1989) Reinstatement of Xanthomonas citri (ex Hasse) and X. phaseoli (ex Smith) to species and reclassification of all X. campestris pv. citri strains. Int J Syst Bacteriol 39:14–22

    Google Scholar 

  • González J, Keshavan N (2006) Messing with bacterial quorum sensing. Microbiol Mol Biol Rev 70:859–875

    PubMed Central  PubMed  Google Scholar 

  • Gottwald T, Graham J, Schubert T (1997a) Citrus canker in urban Miami: an analysis of spread and prognosis for the future. Citrus Ind 78:72–78

    Google Scholar 

  • Gottwald T, Graham J, Schubert T (1997b) An epidemiological analysis of the spread of citrus canker in urban Miami, Florida, and synergistic interaction with the Asian citrus leafminer. Fruits 52:383–390

    Google Scholar 

  • Gottwald T, Timmer L (1995) The efficacy of windbreaks in reducing the spread of citrus canker caused by Xanthomonas campestris pv. citri. Trop. Agric. 72:194–201

    Google Scholar 

  • Gottwald TR, Graham JH, Schubert TS (2002) Citrus canker: the pathogen and its impact. Plant Health Prog. doi: 10.1094/PHP-2002-0812-1001-RV. http://www.plantmanagementnetwork.org/php/

  • Gottwald TR, Hughes G, Graham JH, Sun X, Riley T (2001) The citrus canker epidemic in Florida: the scientific basis of regulatory eradication policy for an invasive species. Phytopathology 91:30–34

    CAS  PubMed  Google Scholar 

  • Gottwald TR, Irey M (2007) Post-hurricane analysis of citrus canker II: Predictive model estimation of disease spread and area potentially impacted by various eradication protocols following catastrophic weather events. Plant, Health Progress doi 10

    Google Scholar 

  • Graham J, Gottwald T, Civerolo E, McGuire R (1989) Population dynamics and survival of Xanthomonas campestris in soil in citrus nurseries in Maryland and Argentina. Plant Dis 43:423–427

    Google Scholar 

  • Graham J, Gottwald T, Cubero J, Achor D (2004) Xanthomonas axonopodis pv. citri: factors affecting successful eradication of citrus canker. Mol. Plant Pathol. 5:1–15

    PubMed  Google Scholar 

  • Guo Y, Figueiredo JF, Jones J, Wang N (2011) HrpG, together with HrpX, play global roles in coordinating different virulence traits of Xanthomonas axonopodis pv. citri. Mol Plant Microbe Interact 24:649–661

    CAS  PubMed  Google Scholar 

  • Guo Y, Sagaram US, Kim J-S, Wang N (2010) Requirement of the galU gene for polysaccharide production by and pathogenicity and growth in planta of Xanthomonas citri subsp. citri. Appl Environ Microbiol 76:2234–2242

    CAS  PubMed Central  PubMed  Google Scholar 

  • Guo Y, Zhang Y, Li JL, Wang N (2012) Diffusible signal factor-mediated quorum sensing plays a central role in coordinating gene expression of Xanthomonas citri subsp. citri. Mol Plant Microbe Interact 25:165–179

    CAS  PubMed  Google Scholar 

  • Hartung J (1992) Plasmid-based hybridization probes for detection and identification of Xanthomonas campestris pv. citri. Plant Dis 76:889–893

    CAS  Google Scholar 

  • Hasse CH (1915) Pseudomonas citri, the cause of citrus canker. J. Agric. Res. 4:97–100

    Google Scholar 

  • He Y-W, Wu JE, Cha J-S, Zhang L-H (2010) Rice bacterial blight pathogen Xanthomonas oryzae pv. oryzae produces multiple DSF-family signals in regulation of virulence factor production. BMC Microbiol 10:187

    PubMed Central  PubMed  Google Scholar 

  • He Y, Xu M, Lin K, Ng Y, Wen C, Wang L, Liu Z, Zhang H, Dong Y, Dow J (2006) Genome scale analysis of diffusible signal factor regulon in Xanthomonas campestris pv. campestris: identification of novel cell-cell communication-dependent genes and functions. Mol Microbiol 59:610–622

    CAS  PubMed  Google Scholar 

  • He YW, Ng AYJ, Xu M, Lin K, Wang LH, Dong YH, Zhang LH (2007) Xanthomonas campestris cell–cell communication involves a putative nucleotide receptor protein Clp and a hierarchical signalling network. Mol Microbiol 64:281–292

    CAS  PubMed  Google Scholar 

  • Hu N, Zhao B (2007) Key genes involved in heavy-metal resistance in Pseudomonas putida CD2. FEMS Microbiol Lett 267:17–22

    CAS  PubMed  Google Scholar 

  • Hu Y, Zhang J, White FF, Wang N, Jones JB (2012) TAL effector PthA4-mediated virulence and host gene induction in citrus canker. Phytopathology 102(S4):55

    Google Scholar 

  • Huguet E, Hahn K, Wengelnik K, Bonas U (1998) hpaA mutants of Xanthomonas campestris pv. vesicatoria are affected in pathogenicity but retain the ability to induce host-specific hypersensitive reaction. Mol Microbiol 29:1379–1390

    CAS  PubMed  Google Scholar 

  • Jalan N, Aritua V, Kumar D, Yu F, Jones JB, Graham JH, Setubal JC, Wang N (2011) Comparative genomic analysis of Xanthomonas axonopodis pv. citrumelo F1, which causes citrus bacterial spot disease, and related strains provides insights into virulence and host specificity. J Bacteriol 193:6342–6357

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jalan N, Kumar D, Yu F, Jones JB, Graham JH, Wang N (2013) Complete genome sequence of Xanthomonas citri subsp. citri strain AW12879, a restricted-host-range citrus canker causing bacterium. Genome Announcements 1(3):e00235-13

    Google Scholar 

  • Jalan N, Kumar D, Andrade MO, Yu F, Jones JB, Graham JH, White FF, Setubal JC, Wang N (2013b) Comparative genomic and transcriptomic analyses of pathotypes of Xanthomonas citri subsp. citri provide insights into mechanisms of bacterial virulence and host range. BMC Genom 14:551

    CAS  Google Scholar 

  • Jansson P, Kenne L, Lindberg B (1975) Structure of the extracellular polysaccharide from Xanthomonas campestris. Carbohydr Res 45:275–282

    CAS  PubMed  Google Scholar 

  • Jenkins AE (1933) Records of Citrus scab mainly from herbarium specimens of the genus Citrus in England and the United States. Phytopathology 23:475–482

    Google Scholar 

  • Kay S, Hahn S, Marois E, Hause G, Bonas U (2007) A bacterial effector acts as a plant transcription factor and induces a cell size regulator. Science 318:648

    CAS  PubMed  Google Scholar 

  • Keller L, Surette M (2006) Communication in bacteria: an ecological and evolutionary perspective. Nat Rev Microbiol 4:249–258

    CAS  PubMed  Google Scholar 

  • Kivistik PA (2010) ColR-ColS signalling system and transposition of Tn4652 in the adaptation of Pseudomonas putida. http://hdl.handle.net/10062/16165

  • Kivistik PA, Putrins M, Puvi K, Ilves H, Kivisaar M, Horak R (2006) The ColRS two-component system regulates membrane functions and protects Pseudomonas putida against phenol. J Bacteriol 188:8109–8117

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kogenaru S, Yan QY, Guo Y, Wang N (2012) RNA-seq and microarray complement each other in transcriptome profiling. BMC Genom 13:629

    CAS  Google Scholar 

  • Ladaniya MS (2008) Citrus fruit: biology, technology and evaluation. Academic Press, San Diego

    Google Scholar 

  • Laia ML, Moreira LM, Dezajacomo J, Brigati JB, Ferreira CB, Ferro MI, Silva AC, Ferro JA, Oliveira JC (2009) New genes of Xanthomonas citri subsp. citri involved in pathogenesis and adaptation revealed by a transposon-based mutant library. BMC Microbiol 9:12

    PubMed Central  PubMed  Google Scholar 

  • Leduc JL, Roberts GP (2009) Cyclic di-GMP allosterically inhibits the CRP-like protein (Clp) of Xanthomonas axonopodis pv. citri. J Bacteriol 191:7121–7122

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee HA (1918) Further data on the susceptibility of rutaceous plants to citrus-canker. J Agric Res 15:661–665

    Google Scholar 

  • Leigh JA, Coplin DL (1992) Exopolysaccharides in plant-bacterial interactions. Annu Rev Microbiol 46:307–346

    CAS  PubMed  Google Scholar 

  • Leite R, Mohan S (1990) Integrated management of the citrus bacterial canker disease caused by Xanthomonas campestris pv. citri in the State of Paraná. Brazil Crop Protect 9:3–7

    Google Scholar 

  • Lenz DH, Mok KC, Lilley BN, Kulkarni RV, Wingreen NS, Bassler BL (2004) The small RNA chaperone Hfq and multiple small RNAs control quorum sensing in Vibrio harveyi and Vibrio cholerae. Cell 118:69–82

    CAS  PubMed  Google Scholar 

  • Li J, Wang N (2011a) Genome-wide mutagenesis of Xanthomonas axonopodis pv. citri reveals novel genetic determinants and regulation mechanisms of biofilm formation. PLoS ONE 6:e21804

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li J, Wang N (2011b) The wxacO gene of Xanthomonas citri subsp. citri encodes a protein with a role in lipopolysaccharide biosynthesis, biofilm formation, stress tolerance and virulence. Mol Plant Pathol 12:381–396

    PubMed  Google Scholar 

  • Lima WC, Menck CF (2008) Replacement of the arginine biosynthesis operon in Xanthomonadales by lateral gene transfer. J Mol Evol 66:266–275

    CAS  PubMed  Google Scholar 

  • Lima WC, Paquola A, Varani AM, Van Sluys MA, Menck CF (2008) Laterally transferred genomic islands in Xanthomonadales related to pathogenicity and primary metabolism. FEMS Microbiol Lett 281:87–97

    CAS  PubMed  Google Scholar 

  • Lima WC, Sluys M-AV, Menck CF (2005) Non-gamma-proteobacteria gene islands contribute to the Xanthomonas genome. OMICS. J Integr Biol 9:160–172

    CAS  Google Scholar 

  • Marguerat S, Bähler J (2010) RNA-seq: from technology to biology. Cell Mol Life Sci 67:569–579

    CAS  PubMed Central  PubMed  Google Scholar 

  • Marois E, Van den Ackerveken G, Bonas U (2002) The Xanthomonas type III effector protein AvrBs3 modulates plant gene expression and induces cell hypertrophy in the susceptible host. Mol Plant Microbe Interact 15:637–646

    CAS  PubMed  Google Scholar 

  • Medini D, Donati C, Tettelin H, Masignani V, Rappuoli R (2005) The microbial pan-genome. Curr Opin Genet Dev 15:589–594

    CAS  PubMed  Google Scholar 

  • Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55:165–199

    CAS  PubMed  Google Scholar 

  • Monteiro-Vitorello CB, De Oliveira MC, Zerillo MM, Varani AM, Civerolo E, Sluys M-AV (2005) Xylella and Xanthomonas mobil’omics. OMICS. J Integr Biol 9:146–159

    CAS  Google Scholar 

  • Moreira L, Almeida N, Potnis N, Digiampietri L, Adi S, Bortolossi J, da Silva A, da Silva A, de Moraes F, de Oliveira J (2010a) Novel insights into the genomic basis of citrus canker based on the genome sequences of two strains of Xanthomonas fuscans subsp. aurantifolii. BMC Genom 11:238

    Google Scholar 

  • Moreira L, de Laia M, de Souza R, Zaini P, da Silva A, Ferro J (2010b) Development and validation of a Xanthomonas axonopodis pv. citri DNA microarray platform (XACarray) generated from the shotgun libraries previously used in the sequencing of this bacterial genome. BMC Res Notes 3:150

    PubMed Central  PubMed  Google Scholar 

  • Muraro RP, Roka FM, Spreen TH (2001) An overview of Argentina’s citrus canker control program. University of Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, EDIS

    Google Scholar 

  • Nealson K, Hastings J (1979) Bacterial bioluminescence: its control and ecological significance. Microbiol Rev 43:496

    CAS  PubMed Central  PubMed  Google Scholar 

  • Newman MA, Dow JM, Molinaro A, Parrilli M (2007) Invited review: priming, induction and modulation of plant defence responses by bacterial lipopolysaccharides. J Endotoxin Res 13:69

    CAS  PubMed  Google Scholar 

  • Ngoc LBT, Vernière C, Jouen E, Ah-You N, Lefeuvre P, Chiroleu F, Gagnevin L, Pruvost O (2010) Amplified fragment length polymorphism and multilocus sequence analysis-based genotypic relatedness among pathogenic variants of Xanthomonas citri pv. citri and Xanthomonas campestris pv. bilvae. Int J Syst Evol Microbiol 60:515–525

    CAS  Google Scholar 

  • Ninfa AJ, Atkinson MR, Kamberov E, Feng J, Ninfa E (1995) Control of nitrogen assimilation by the NRI-NRII two-component system of enteric bacteria. Twocompon Signal Transduction 67–88 (American Society for Microbiology, Washington, DC)

    Google Scholar 

  • Noel L, Thieme F, Nennstiel D, Bonas U (2001) cDNA-AFLP analysis unravels a genome-wide hrpG-regulon in the plant pathogen Xanthomonas campestris pv. vesicatoria. Mol Microbiol 41:1271–1281

    CAS  PubMed  Google Scholar 

  • Ochman H, Lawrence JG, Groisman EA (2000) Lateral gene transfer and the nature of bacterial innovation. Nature 405:299–304

    CAS  PubMed  Google Scholar 

  • Papo N, Shai Y (2005) A molecular mechanism for lipopolysaccharide protection of Gram-negative bacteria from antimicrobial peptides. J Biol Chem 280:10378

    CAS  PubMed  Google Scholar 

  • Patil P, Sonti R (2004) Variation suggestive of horizontal gene transfer at a lipopolysaccharide(lps) biosynthetic locus in Xanthomonas oryzae pv. oryzae, the bacterial leaf blight pathogen of rice. BMC Microbiol 4:40

    PubMed Central  PubMed  Google Scholar 

  • Patil PB, Bogdanove AJ, Sonti RV (2007) The role of horizontal transfer in the evolution of a highly variable lipopolysaccharide biosynthesis locus in xanthomonads that infect rice, citrus and crucifers. BMC Evol Biol 7:243

    PubMed Central  PubMed  Google Scholar 

  • Paul R, Weiser S, Amiot NC, Chan C, Schirmer T, Giese B, Jenal U (2004) Cell cycle-dependent dynamic localization of a bacterial response regulator with a novel di-guanylate cyclase output domain. Genes Dev 18:715–727

    CAS  PubMed Central  PubMed  Google Scholar 

  • Qian W, Han Z-J, He C (2008) Two-component signal transduction systems of Xanthomonas spp.: a lesson from genomics. Mol Plant Microbe Interact 21:151–161

    CAS  PubMed  Google Scholar 

  • Raetz CRH, Whitfield C (2002) Lipopolysaccharide endotoxins. Annu Rev Biochem 71:635–700

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rhoads AS, DeBusk E (1931) Diseases of citrus in Florida. University of Florida Agricultural Experiment Station

    Google Scholar 

  • Rigano L, Siciliano F, Enrique R, Sendín L, Filippone P, Torres P, Qüesta J, Dow J, Castagnaro A, Vojnov A (2007) Biofilm formation, epiphytic fitness, and canker development in Xanthomonas axonopodis pv. citri. Mol Plant Microbe Interact 20:1222–1230

    CAS  PubMed  Google Scholar 

  • Rita Hõrak HI, Pruunsild Priit, Kuljus Martin, Kivisaar Maia (2004) The ColR–ColS two-component signal transduction system is involved in regulation of Tn4652 transposition in Pseudomonas putida under starvation conditions. Mol Microbiol 54:795–807

    PubMed  Google Scholar 

  • Ryan R, McCarthy Y, Andrade M, Farah C, Armitage J, Dow J (2010) Cell–cell signal-dependent dynamic interactions between HD-GYP and GGDEF domain proteins mediate virulence in Xanthomonas campestris. Proc Natl Acad Sci USA 107:5989–5994

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rybak M, Minsavage G, Stall R, Jones J (2009) Identification of Xanthomonas citri ssp. citri host specificity genes in a heterologous expression host. Mol Plant Pathol 10:249–262

    CAS  PubMed  Google Scholar 

  • Schoulties CL, Miller JW (1985) A new outbreak of citrus canker in Florida. Plant Dis 69:1

    Google Scholar 

  • Schubert T, Sun X (1996) Bacterial citrus canker. Plant Pathol Circular 377:110–111 (Florida Department of Agriculture and Consumer Services DoPI, Gainesville, FL)

    Google Scholar 

  • Schubert TS, Rizvi SA, Sun X, Gottwald TR, Graham JH, Dixon WN (2001) Meeting the challenge of eradicating citrus canker in Florida-Again. Plant Dis 85:340–356

    Google Scholar 

  • Semenova E, Nagornykh M, Pyatnitskiy M, Artamonova II, Severinov K (2009) Analysis of CRISPR system function in plant pathogen Xanthomonas oryzae. FEMS Microbiol Lett 296:110–116

    CAS  PubMed  Google Scholar 

  • Slater H, Alvarez-Morales A, Barber CE, Daniels MJ, Dow JM (2000) A two-component system involving an HD-GYP domain protein links cell–cell signalling to pathogenicity gene expression in Xanthomonas campestris. Mol Microbiol 38:986–1003

    CAS  PubMed  Google Scholar 

  • Stall R, Civerolo E (1991) Research relating to the recent outbreak of citrus canker in Florida. Annu Rev Phytopathol 29:399–420

    CAS  PubMed  Google Scholar 

  • Stall RE, Miller J, Marco GM, Echenique BIC (1980) Population dynamics of Xanthomonas citri causing cancrosis of citrus in Argentina. P Fl St Hortic Soc 93:10–14

    Google Scholar 

  • Stall RE, Seymour CP (1983) Canker, a threat to citrus in the Gulf-Coast states. Plant Dis 67:581–585

    Google Scholar 

  • Stock AM, Robinson VL, Goudreau PN (2000) Two-component signal transduction. Annu Rev Biochem 69:183–215

    CAS  PubMed  Google Scholar 

  • Subramoni S, Jha G, Sonti R (2006) Virulence functions of xanthomonads. Plant Assoc Bact 535–571

    Google Scholar 

  • Sun M (1984) The mystery of Florida’s citrus canker: scientists haven’t seen this bacterial strain before, but it’s already led to the destruction of millions of seedlings. Science 226:322–323

    CAS  PubMed  Google Scholar 

  • Sun X, Stall RE, Jones JB, Cubero J, Gottwald TR, Graham JH, Dixon WN, Schubert TS, Chaloux PH, Stromberg VK, Lacy GH, Sutton BD (2004) Detection and characterization of a new strain of citrus canker bacteria from Key/Mexican lime and alemow in South Florida. Plant Dis 88:1179–1188

    CAS  Google Scholar 

  • Swarup S, De Feyter R, Brlansky R, Gabriel D (1991) A pathogenicity locus from Xanthomonas citri enables strains from several pathovars of X. campestris to elicit cankerlike lesions on citrus. Phytopathology 81:802–809

    Google Scholar 

  • Swarup S, Yang Y, Kingsley MT, Gabriel DW (1992) An Xanthomonas citri pathogenicity gene, pthA, pleiotropically encodes gratuitous avirulence on nonhosts. Mol Plant Microbe Interact 5:204–213

    CAS  PubMed  Google Scholar 

  • Szurek B, Marois E, Bonas U, Ackerveken GVD (2001) Eukaryotic features of the Xanthomonas type III effector AvrBs3: protein domains involved in transcriptional activation and the interaction with nuclear import receptors from pepper. Plant J 26:523–534

    CAS  PubMed  Google Scholar 

  • Tal R, Wong HC, Calhoon R, Gelfand D, Fear AL, Volman G, Mayer R, Ross P, Amikam D, Weinhouse H (1998) Three cdg operons control cellular turnover of cyclic di-GMP in Acetobacter xylinum: genetic organization and occurrence of conserved domains in isoenzymes. J Bacteriol 180:4416–4425

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tettelin H, Riley D, Cattuto C, Medini D (2008) Comparative genomics: the bacterial pan-genome. Curr Opin Microbiol 11:472–477

    CAS  PubMed  Google Scholar 

  • USDA (2006) USDA determines citrus canker eradication not feasible. Department Press Release http://nassau.ifas.ufl.edu/news/citruscanker.html

  • Van Sluys M, Monteiro-Vitorello C, Camargo L, Menck C, Da Silva A, Ferro J, Oliveira M, Setubal J, Kitajima J, Simpson A (2002) Comparative genomic analysis of plant-associated bacteria. Annu Rev Phytopathol 40:169–189

    PubMed  Google Scholar 

  • Vernière C, Hartung JS, Pruvost OP, Civerolo EL, Alvarez AM, Maestri P, Luisetti J (1998) Characterization of phenotypically distinct strains of Xanthomonas axonopodis pv. citri from Southwest Asia. Eur J Plant Pathol 104:11

    Google Scholar 

  • Vorholter F, Niehaus K, Pühler A (2001) Lipopolysaccharide biosynthesis in Xanthomonas campestris pv. campestris: a cluster of 15 genes is involved in the biosynthesis of the LPS O-antigen and the LPS core. Mol Genet Genomics 266:79–95

    CAS  PubMed  Google Scholar 

  • Wang J, So B, Kim J, Park Y, Lee B, Kang H (2008) Genome-wide identification of pathogenicity genes in Xanthomonas oryzae pv. oryzae by transposon mutagenesis. Plant Pathol 57:1136–1145

    CAS  Google Scholar 

  • Wang LH, He Y, Gao Y, Wu JE, Dong YH, He C, Wang SX, Weng LX, Xu JL, Tay L (2004) A bacterial cell–cell communication signal with cross-kingdom structural analogues. Mol Microbiol 51:903–912

    CAS  PubMed  Google Scholar 

  • Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63

    CAS  PubMed Central  PubMed  Google Scholar 

  • Waters CM, Bassler BL (2005) Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 21:319–346

    CAS  PubMed  Google Scholar 

  • Waters CM, Lu W, Rabinowitz JD, Bassler BL (2008) Quorum sensing controls biofilm formation in Vibrio cholerae through modulation of cyclic di-GMP levels and repression of vpsT. J Bacteriol 190:2527–2536

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wengelnik K, Bonas U (1996) HrpXv, an AraC-type regulator, activates expression of five of the six loci in the hrp cluster of Xanthomonas campestris pv. vesicatoria. J Bacteriol 178:3462–3469

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wengelnik K, Van den Ackerveken G, Bonas U (1996) HrpG, a key hrp regulatory protein of Xanthomonas campestris pv. vesicatoria is homologous to two-component response regulators. Mol Plant Microbe Interact 9:704–712

    CAS  PubMed  Google Scholar 

  • White FF, Potnis N, Jones JB, Koebnik R (2009) The type III effectors of Xanthomonas. Mol. Plant Pathol. 10:749–766

    CAS  PubMed  Google Scholar 

  • Williams P, Winzer K, Chan WC, Camara M, Cámara M (2007) Look who’s talking: communication and quorum sensing in the bacterial world. Philos Trans R Soc B: Biol Sci 362:1119–1134

    CAS  Google Scholar 

  • Yamazaki A, Hirata H, Tsuyumu S (2008) HrpG regulates type II secretory proteins in Xanthomonas axonopodis pv. citri. J Gen Plant Pathol 74:138–150

    CAS  Google Scholar 

  • Yan Q, Hu X, Wang N (2012) The novel virulence‐related gene nlxA in the lipopolysaccharide cluster of Xanthomonas citri ssp. citri is involved in the production of lipopolysaccharide and extracellular polysaccharide, motility, biofilm formation and stress resistance. Mol Plant Pathol. doi: 10.1111/j.1364-3703.2012.00800.x

  • Yan Q, Wang N (2011) The ColR/ColS two-component system plays multiple roles in the pathogenicity of the citrus canker pathogen Xanthomonas citri subsp. citri. J Bacteriol 193:1590–1599

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yan Q, Wang N (2012) High-throughput screening and analysis of genes of Xanthomonas citri subsp. citri involved in citrus canker symptom development. Mol Plant Microbe Interact 25:69–84

    CAS  PubMed  Google Scholar 

  • Yang B, White FF (2004) Diverse members of the AvrBs3/PthA family of type III effectors are major virulence determinants in bacterial blight disease of rice. Mol Plant Microbe Interact 17:1192–1200

    CAS  PubMed  Google Scholar 

  • Zansler ML (2004) The economic impacts to an industry associated with an invasive species: the case of ctrus canker in Florida. University of Florida

    Google Scholar 

  • Zeidler D, Zähringer U, Gerber I, Dubery I, Hartung T, Bors W, Hutzler P, Durner J (2004) Innate immunity in Arabidopsis thaliana: lipopolysaccharides activate nitric oxide synthase (NOS) and induce defense genes. Proc Natl Acad Sci USA 101:15811–15816

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang S, He Y, Xu L, Chen B, Jiang B, Liao J, Cao J, Liu D, Huang Y, Liang X (2008) A putative colRXC1049colSXC1050 two-component signal transduction system in Xanthomonas campestris positively regulates hrpC and hrpE operons and is involved in virulence, the hypersensitive response and tolerance to various stresses. Res Microbiol 159:569–578

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nian Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jalan, N. et al. (2014). Genomics of Xanthomonas citri and Related Species. In: Gross, D., Lichens-Park, A., Kole, C. (eds) Genomics of Plant-Associated Bacteria. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55378-3_7

Download citation

Publish with us

Policies and ethics