Skip to main content

Phytoplasma Genomes: Evolution Through Mutually Complementary Mechanisms, Gene Loss and Horizontal Acquisition

  • Chapter
  • First Online:
Genomics of Plant-Associated Bacteria

Abstract

Phytoplasmas are cell wall-less bacteria that inhabit phloem sieve cells of infected plants and are transmitted by phloem-feeding insect vectors. Having descended from a Gram-positive, low G+C walled bacterium and more recently from an Acholeplasma-like ancestor, the phytoplasma clade underwent substantial evolutionary genome shrinkage. Yet, phytoplasma genomes contain numerous repeated sequences that appear in genomic islands. These islands, first termed sequence-variable mosaics (SVMs), were formed by recurrent and targeted attacks by ancient phages. This chapter describes distinctive architecture of phytoplasma genomes, genes unique to phytoplasmas, and genes that underwent lineage-specific acquisition and loss. The chapter also discusses essential genes that are missing in phytoplasmas compared with those present in Mycoplasma genitalium, a model free-living bacterium thought to have the minimum gene complement among known cellular organisms. Available genome data indicate that a common genomic thread unites all phytoplasmas: Through the formation of phage-based genomic islands, SVMs, the phytoplasma progenitor acquired new capabilities. Repeated and targeted chromosomal integration of phage genomes, and further gene acquisition through targeted insertion of mobile gene cassette-like elements, shaped the phytoplasma genome. While the loss of genes encoding diverse metabolic pathways must have led to increased host dependence, new capabilities were acquired that enabled and enhanced phytoplasma–host interactions. Thus, two mutually complementary, genome-sculpting mechanisms acting in concert played key roles in phytoplasma evolution. The rapidly evolving nature and lineage-specific adaptation of vertically inherited as well as horizontally acquired phytoplasmal genes are evident and deserve attention in future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abreu IA, Cabelli DE (2010) Superoxide dismutases-a review of the metal-associated mechanistic variations. Biochim Biophys Acta 1804:263–274

    CAS  PubMed  Google Scholar 

  • Al-Saady NA, Khan AJ, Calari A, Al-Subhi AM, Bertaccini A (2008) ‘Candidatus Phytoplasma omanense’, associated with witches’-broom of Cassia italica (Mill.) Spreng. in Oman. Int J Syst Evol Microbiol 58:461–466

    CAS  PubMed  Google Scholar 

  • Arashida R, Kakizawa S, Hoshi A, Ishii Y, Jung HY, Kagiwada S, Yamaji Y, Oshima K, Namba S (2008a) Heterogeneic dynamics of the structures of multiple gene clusters in two pathogenetically different lines originating from the same phytoplasma. DNA Cell Biol 27:209–217

    CAS  PubMed  Google Scholar 

  • Arashida R, Kakizawa S, Ishii Y, Hoshi A, Jung HY, Kagiwada S, Yamaji Y, Oshima K, Namba S (2008b) Cloning and characterization of the antigenic membrane protein (Amp) gene and in situ detection of Amp from malformed flowers infected with Japanese hydrangea phyllody phytoplasma. Phytopathology 98:769–775

    CAS  PubMed  Google Scholar 

  • Aurass P, Schlegel M, Metwally O, Harding CR, Schroeder GN, Frankel G, Flieger A (2013) The Legionella pneumophila Dot/Icm-secreted effector PlcC/CegC1 together with PlcA and PlcB promotes virulence and belongs to a novel zinc metallophospholipase C family present in bacteria and fungi. J Biol Chem (Epub ahead of print)

    Google Scholar 

  • Bagadia PG, Polashock J, Bottner-Parker KD, Zhao Y, Davis RE, Lee I-M (2013) Characterization and molecular differentiation of 16SrI-E and 16SrIX-E phytoplasmas associated with blueberry stunt disease in New Jersey. Mol Cell Probes 27:90–97

    CAS  PubMed  Google Scholar 

  • Bai X, Zhang J, Ewing A, Miller SA, Jancso Radek A, Shevchenko DV, Tsukerman K, Walunas T, Lapidus A, Campbell JW, Hogenhout SA (2006) Living with genome instability: the adaptation of phytoplasmas to diverse environments of their insect and plant hosts. J Bacteriol 188:3682–3696

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bai X, Correa VR, Toruño TY, Ammar el D, Kamoun S, Hogenhout SA (2009) AY-WB phytoplasma secretes a protein that targets plant cell nuclei. Mol Plant Microbe Interact 22:18–30

    CAS  PubMed  Google Scholar 

  • Banerji S, Aurass P, Flieger A (2008) The manifold phospholipases A of Legionella pneumophila—identification, export, regulation, and their link to bacterial virulence. Int J Medical Microbiol 298:169–181

    CAS  Google Scholar 

  • Barbara DJ, Morton A, Clark MF, Davies DL (2002) Immunodominant membrane proteins from two phytoplasmas in the aster yellows clade (chlorante aster yellows and clover phyllody) are highly divergent in the major hydrophilic region. Microbiology 148:157–167

    CAS  PubMed  Google Scholar 

  • Barré A, de Daruvar A, Blanchard A (2004) MolliGen, a database dedicated to the comparative genomics of Mollicutes. Nucleic Acids Res 32:D307–D310

    PubMed  PubMed Central  Google Scholar 

  • Belenky P, Bogan KL, Brenner C (2007) NAD+ metabolism in health and disease. Trends Biochem Sci 32(1):12–19

    CAS  PubMed  Google Scholar 

  • Bertamini M, Grando MS, Muthuchelian K, Nedunchezhian N (2002a) Effect of phytoplasmal infection on photosystem II efficiency and thylakoid membrane protein changes in field grown apple (Malus pumila) leaves. Physiol Mol Plant Pathol 61:349–356

    CAS  Google Scholar 

  • Bertamini M, Nedunchezhian N, Tomasi F, Grando MS (2002b) Phytoplasma [Stolbur-subgroup (Bois Noir-BN)] infection inhibits photosynthetic pigments, ribulose-1,5-bisphosphate carboxylase and photosynthetic activities in field grown grapevine (Vitis vinifera L. cv. Chardonnay) leaves. Physiol Mol Plant Pathol 61:357–366

    CAS  Google Scholar 

  • Bessman MJ, Frick DN, O’Handley SF (1996) The MutT proteins or “Nudix” hydrolases, a family of versatile, widely distributed, “housecleaning” enzymes. J Biol Chem 271:25059–25062

    CAS  PubMed  Google Scholar 

  • Bi J, Wang H, Xie J (2011) Comparative genomics of NAD(P) biosynthesis and novel antibiotic drug targets. J Cell Physiol 226:331–340

    CAS  PubMed  Google Scholar 

  • Bizarro CV, Schuck DC (2007) Purine and pyrimidine nucleotide metabolism in Mollicutes. Genet Mol Biol 30(1):190–201

    CAS  Google Scholar 

  • Boulila-Zoghlami L, Gallusci P, Holzer FM, Basset GJ, Djebali W, Chaïbi W, Walling LL, Brouquisse R (2011) Up-regulation of leucine aminopeptidase-A in cadmium-treated tomato roots. Planta 234:857–863

    CAS  PubMed  Google Scholar 

  • Brüssow H, Canchaya C, Hardt WD (2004) Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol Mol Biol Rev 68:560–602

    PubMed  PubMed Central  Google Scholar 

  • Buchanan BB, Holmgren A, Jacquot JP, Scheibe R (2012) Fifty years in the thioredoxin field and a bountiful harvest. Biochim Biophys Acta 1820:1822–1829

    CAS  PubMed  Google Scholar 

  • Bukata L, Altabe S, de Mendoza D, Ugalde RA, Comerci DJ (2008) Phosphatidylethanolamine synthesis is required for optimal virulence of Brucella abortus. J Bacteriol 190:8197–8203

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cai H, Wei W, Davis RE, Chen H, Zhao Y (2008) Genetic diversity among phytoplasmas infecting Opuntia species: virtual RFLP analysis identifies new subgroups in the peanut witches’-broom phytoplasma group. Int J Syst Evol Microbiol 58:1448–1457

    CAS  PubMed  Google Scholar 

  • Caldara M, Dupont G, Leroy F, Goldbeter A, De Vuyst L, Cunin R (2008) Arginine biosynthesis in Escherichia coli: experimental perturbation and mathematical modeling. J Biol Chem 283:6347–6358

    CAS  PubMed  Google Scholar 

  • Cappiello M, Lazzarotti A, Buono F, Scaloni A, D’Ambrosio C, Amodeo P, Méndez BL, Pelosi P, Del Corso A, Mura U (2004) New role for leucyl aminopeptidase in glutathione turnover. Biochem J 378:35–44

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carraro L, Ermacora P, Loi N, Osler R (2004) The recovery phenomenon in apple proliferation-infected apple trees. J Plant Pathol 86:141–146

    Google Scholar 

  • Carroll RK, Robison TM, Rivera FE, Davenport JE, Jonsson IM, Florczyk D, Tarkowski A, Potempa J, Koziel J, Shaw LN (2012) Identification of an intracellular M17 family leucine aminopeptidase that is required for virulence in Staphylococcus aureus. Microbes Infect 14:989–999

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cenens W, Mebrhatu MT, Makumi A, Ceyssens PJ, Lavigne R, Van Houdt R, Taddei F, Aertsen A (2013) Expression of a novel P22 ORFan gene reveals the phage carrier state in Salmonella typhimurium. PLoS Genet 9(2):e1003269

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cettul E, Firrao G (2011) Development of phytoplasma-induced flower symptoms in Arabidopsis thaliana. Physiol Mol Plant Pathol 76:204–211

    CAS  Google Scholar 

  • Chen YL, Montedonico AE, Kauffman S, Dunlap JR, Menn FM, Reynolds TB (2010) Phosphatidylserine synthase and phosphatidylserine decarboxylase are essential for cell wall integrity and virulence in Candida albicans. Mol Microbiol 75:1112–1132

    CAS  PubMed  Google Scholar 

  • Chimalapati S, Cohen JM, Camberlein E, MacDonald N, Durmort C, Vernet T, Hermans PW, Mitchell T, Brown JS (2012) Effects of deletion of the Streptococcus pneumoniae lipoprotein diacylglyceryl transferase gene lgt on ABC transporter function and on growth in vivo. PLoS ONE 7(7):e41393

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clarke S, Banfield K. (2001) S-adenosylmethionine-dependent methyltransferases. In: Carmel R, Jacobsen DW (eds) Homocysteine in health and disease. New York, Cambridge University Press, pp 63–79

    Google Scholar 

  • Conde-Alvarez R, Grilló MJ, Salcedo SP, de Miguel MJ, Fugier E, Gorvel JP, Moriyón I, Iriarte M (2006) Synthesis of phosphatidylcholine, a typical eukaryotic phospholipid, is necessary for full virulence of the intracellular bacterial parasite Brucella abortus. Cell Microbiol 8:1322–1335

    CAS  PubMed  Google Scholar 

  • Conrady DG, Wilson JJ, Herr AB (2013) Structural basis for Zn2+-dependent intercellular adhesion in staphylococcal biofilms. Proc Natl Acad Sci USA 110:E202–E211

    CAS  PubMed  PubMed Central  Google Scholar 

  • Contaldo N, Bertaccini A, Paltrinieri S, Windsor HM, Windsor GD (2012) Axenic culture of plant pathogenic phytoplasmas. Phytopathologia Mediterranea 51:607–617

    CAS  Google Scholar 

  • Cumby N, Edwards AM, Davidson AR, Maxwell KL (2012) The bacteriophage HK97 gp15 moron element encodes a novel superinfection exclusion protein. J Bacteriol 194:5012–5019

    CAS  PubMed  PubMed Central  Google Scholar 

  • Curković-Perica M, Lepedus H, Seruga-Musić M (2007) Effect of indole-3-butyric acid on phytoplasmas in infected Catharanthus roseus shoots grown in vitro. FEMS Microbiol Lett 268:171–177

    PubMed  Google Scholar 

  • Darling AC, Mau B, Blattner FR, Perna NT (2004) Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res 14:1394–1403

    CAS  PubMed  PubMed Central  Google Scholar 

  • Davis RE, Lee I-M (1982) Pathogenicity of spiroplasmas, mycoplasmalike organisms, and vascular-limited fastidious walled bacteria. In: Mount M, Lacy G (eds) Phytopathogenic Prokaryotes, vol 1. Academic Press, New York, pp 491–513

    Google Scholar 

  • Davis RE, Sinclair WA (1998) Phytoplasma identity and disease etiology. Phytopathology 88:1372–1376

    CAS  PubMed  Google Scholar 

  • Davis RE, Worley JF (1973) Spiroplasma: motile, helical microorganism associated with corn stunt disease. Phytopathology 63:403–408

    Google Scholar 

  • Davis RE, Worley JF, Whitcomb RF, Ishijima R, Steere RL (1972) Helical filaments produced by a mycoplasmalike organism associated with corn stunt disease. Science 176:521–523

    PubMed  Google Scholar 

  • Davis RE, Dally EL, Gundersen DE, Lee I-M, Habili N (1997) ‘Candidatus Phytoplasma australiense’, a new phytoplasma taxon associated with Australian grapevine yellows. Int J Syst Bacteriol 47:262–269

    CAS  PubMed  Google Scholar 

  • Davis RE, Jomantiene R, Zhao Y, Dally EL (2003) Folate biosynthesis pseudogenes, ψfolP and ψfolK, and an O-sialoglycoprotein endopeptidase gene homolog in the phytoplasma genome. DNA Cell Biol 22:697–706

    CAS  PubMed  Google Scholar 

  • Davis RE, Jomantiene R, Zhao Y (2005) Lineage-specific decay of folate biosynthesis genes suggests ongoing host adaptation in phytoplasmas. DNA Cell Biol 24:832–840

    CAS  PubMed  Google Scholar 

  • Davis RE, Jomantiene R, Zhao Y (2007) Dynamic structures in phytoplasma genomes: sequence variable mosaics (SVMs) of clustered genes. Bull Insectol 60:119–120

    Google Scholar 

  • Davis RE, Zhao Y, Dally EL, Lee IM, Jomantiene R, Douglas SM (2013) ‘Candidatus Phytoplasma pruni’, a novel taxon associated with X-disease of stone fruits, Prunus spp.: multilocus characterization based on 16S rRNA, secY, and ribosomal protein genes. Int J Syst Evol Microbiol 63:766–776

    CAS  PubMed  Google Scholar 

  • Diener TO (1971) Potato spindle tuber “virus”. IV. A replicating, low molecular weight RNA. Virology 45:411–428

    CAS  PubMed  Google Scholar 

  • Ding Y, Wu W, Wei W, Davis RE, Lee I-M, Hammond RW, Sheng J, Shen L, Jinag Y, Zhao Y (2013) Potato purple top phytoplasma-induced disruption of gibberellin homeostasis in tomato plants. Ann Appl Biol 162:131–139

    CAS  Google Scholar 

  • Doi YM, Teranaka M, Yora K, Asuyama H (1967) Mycoplasma or PLT-group-like microorganisms found in the phloem elements of plants infected with mulberry dwarf, potato witches’ broom, aster yellows, or paulownia witches’ broom. Ann Phytopathol Soc Jpn 33:259–266

    Google Scholar 

  • Durante G, Casati P, Clair D, Quaglino F, Bulgari D, Boudon-Padieu E, Bianco PA (2012) Sequence analyses of S10-spc operon among 16SrV group phytoplasmas: phylogenetic relationships and identification of discriminating single nucleotide polymorphisms. Ann Appl Biol 161:234–246

    CAS  Google Scholar 

  • Eadsforth TC, Gardiner M, Maluf FV, McElroy S, James D, Frearson J, Gray D, Hunter WN (2012) Assessment of Pseudomonas aeruginosa N5,N10-methylenetetrahydrofolate dehydrogenase-cyclohydrolase as a potential antibacterial drug target. PLoS ONE 7(4):e35973

    CAS  PubMed  PubMed Central  Google Scholar 

  • Frago S, Martínez-Júlvez M, Serrano A, Medina M (2008) Structural analysis of FAD synthetase from Corynebacterium ammoniagenes. BMC Microbiol 8:160

    PubMed  PubMed Central  Google Scholar 

  • Fraser CM, Gocayne JD, White O, Adams MD, Clayton RA, Fleischmann RD, Bult CJ, Kerlavage AR, Sutton G, Kelley JM, Fritchman RD, Weidman JF, Small KV, Sandusky M, Fuhrmann J, Nguyen D, Utterback TR, Saudek DM, Phillips CA, Merrick JM, Tomb JF, Dougherty BA, Bott KF, Hu PC, Lucier TS, Peterson SN, Smith HO, Hutchison CA 3rd, Venter JC (1995) The minimal gene complement of Mycoplasma genitalium. Science 270:397–403

    CAS  PubMed  Google Scholar 

  • Garavaglia S, Galizzi A, Rizzi M (2003) Allosteric regulation of Bacillus subtilis NAD kinase by quinolinic acid. J Bacteriol 185:4844–4850

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gedvilaite A, Jomantiene R, Dabrisius J, Norkiene M, Davis RE (2014) Functional analysis of a lipolytic protein encoded in phytoplasma phage based genomic island. Microbiol Res 169:388–394

    Google Scholar 

  • Ghosh SK, Raychaudhuri SP, Varma A, Nariani TK (1971) Isolation and culture of mycoplasma associated with citrus greening disease. Curr Sci 40:299–300

    Google Scholar 

  • Glass JI, Assad-Garcia N, Alperovich N, Yooseph S, Lewis MR, Maruf M, Hutchison CA 3rd, Smith HO, Venter JC (2006) Essential genes of a minimal bacterium. Proc Natl Acad Sci USA 103:425–430

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gundersen DE, Lee IM, Rehner SA, Davis RE, Kingsbury DT (1994) Phylogeny of mycoplasmalike organisms (phytoplasmas): a basis for their classification. J Bacteriol 176:5244–5254

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hampton RO, Stevens JG, Allen TC (1969) Mechanically transmissible mycoplasma from naturally infected peas. Plant Dis Reporter 53:499–503

    Google Scholar 

  • Hanschmann EM, Godoy JR, Berndt C, Hudemann C, Lillig CH (2013) Thioredoxins, glutaredoxins, and peroxiredoxins-molecular mechanisms and health significance: from cofactors to antioxidants to redox signaling. Antioxid Redox Signal, Mar 28, 2013 (Epub ahead of print)

    Google Scholar 

  • Hantke K (2005) Bacterial zinc uptake and regulators. Curr Opin Microbiol 8:196–202

    CAS  PubMed  Google Scholar 

  • Himeno M, Neriya Y, Minato N, Miura C, Sugawara K, Ishii Y, Yamaji Y, Kakizawa S, Oshima K, Namba S (2011) Unique morphological changes in plant pathogenic phytoplasma-infected petunia flowers are related to transcriptional regulation of floral homeotic genes in an organ-specific manner. Plant J 67:971–979

    CAS  PubMed  Google Scholar 

  • Hoshi A, Oshima K, Kakizawa S, Ishii Y, Ozeki J, Hashimoto M, Komatsu K, Kagiwada S, Yamaji Y, Namba S (2009) A unique virulence factor for proliferation and dwarfism in plants identified from a phytopathogenic bacterium. Proc Natl Acad Sci USA 106:6416–6421

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hsiao W, Wan I, Jones SJ, Brinkman FS (2003) IslandPath: aiding detection of genomic islands in prokaryotes. Bioinformatics 19:418–420

    CAS  PubMed  Google Scholar 

  • IRPCM Phytoplasma/Spiroplasma Working Team-Phytoplasma Taxonomy Group (2004) ‘Candidatus Phytoplasma’, a taxon for the wall-less, non-helical prokaryotes that colonize plant phloem and insects. Int J Syst Evol Microbiol 54:1243–1255

    Google Scholar 

  • Ishiie T, Doi Y, Yora K, Asuyama H (1967) Suppressive effects of antibiotics of tetracycline group on symptom development of mulberry dwarf disease. Ann Phytopathol Soc Jpn 33:267–275

    Google Scholar 

  • Istivan TS, Coloe PJ (2006) Phospholipase A in Gram-negative bacteria and its role in pathogenesis. Microbiology 152:1263–1274

    CAS  PubMed  Google Scholar 

  • Javid-Majd F, Blanchard JS (2000) Mechanistic analysis of the argE-encoded N-acetylornithine deacetylase. Biochemistry 39(6):1285–1293

    CAS  PubMed  Google Scholar 

  • Jomantiene R, Davis RE (2006) Clusters of diverse genes existing as multiple, sequence-variable mosaics in a phytoplasma genome. FEMS Microbiol Lett 255:59–65

    CAS  PubMed  Google Scholar 

  • Jomantiene R, Zhao Y, Davis RE (2007) Sequence-variable mosaics: composites of recurrent transposition characterizing the genomes of phylogenetically diverse phytoplasmas. DNA Cell Biol 26:557–564

    CAS  PubMed  Google Scholar 

  • Jomantiene R, Zhao Y, Lee I-M, Davis RE (2011) Phytoplasmas infecting sour cherry and lilac represent two distinct lineages having closes evolutionary affinities with clover phyllody phytoplasma. Eur J Plant Pathol 130:97–107

    CAS  Google Scholar 

  • Jorasch P, Wolter FP, Zähringer U, Heinz E (1998) A UDP glucosyltransferase from Bacillus subtilis successively transfers up to four glucose residues to 1,2-diacylglycerol: expression of ypfP in Escherichia coli and structural analysis of its reaction products. Mol Microbiol 29:419–430

    CAS  PubMed  Google Scholar 

  • Kakizawa S, Oshima K, Nishigawa H, Jung HY, Wei W, Suzuki S, Tanaka M, Miyata S, Ugaki M, Namba S (2004) Secretion of immunodominant membrane protein from onion yellows phytoplasma through the Sec protein-translocation system in Escherichia coli. Microbiology 150:135–142

    CAS  PubMed  Google Scholar 

  • Karlin S (2001) Detecting anomalous gene clusters and pathogenicity islands in diverse bacterial genomes. Trends Microbiol 9:335–343

    CAS  PubMed  Google Scholar 

  • Kawai S, Murata K (2008) Structure and function of NAD kinase and NADP phosphatase: key enzymes that regulate the intracellular balance of NAD(H) and NADP(H). Biosci Biotechnol Biochem 72:919–930

    CAS  PubMed  Google Scholar 

  • Klimasauskas S, Weinhold E (2007) A new tool for biotechnology: AdoMet-dependent methyltransferases. Trends Biotechnol 25:99–104

    CAS  PubMed  Google Scholar 

  • Kobayashi M, Shimizu S (1999) Cobalt proteins. Eur J Biochem 261:1–9

    CAS  PubMed  Google Scholar 

  • Kube M, Schneider B, Kuhl H, Dandekar T, Heitmann K, Migdoll AM, Reinhardt R, Seemüller E (2008) The linear chromosome of the plant-pathogenic mycoplasma ‘Candidatus Phytoplasma mali’. BMC Genom 9:306

    Google Scholar 

  • Kube M, Mitrovic J, Duduk B, Rabus R, Seemüller E (2012) Current view on phytoplasma genomes and encoded metabolism. Sci World J 2012:185942

    Google Scholar 

  • Lee I-M, Hammond RW, Davis RE, Gundersen DE (1993) Universal amplification and analysis of pathogen 16S rDNA for classification and identification of mycoplasmalike organisms. Phytopathology 83:834–842

    CAS  Google Scholar 

  • Lee I-M, Gundersen-Rindal DE, Davis RE, Bartoszyk IM (1998) Revised classification scheme of phytoplasmas based on RFLP analysis of 16S rRNA and ribosomal protein gene sequences. Int J Syst Bacteriol 48:1153–1169

    CAS  Google Scholar 

  • Lee I-M, Davis RE, Gundersen-Rindal DE (2000) Phytoplasma: phytopathogenic mollicutes. Annu Rev Microbiol 54:221–255

    CAS  PubMed  Google Scholar 

  • Lee I-M, Gundersen-Rindal DE, Davis RE, Bottner KD, Marcone C, Seemüller E (2004) ‘Candidatus Phytoplasma asteris’, a novel phytoplasma taxon associated with aster yellows and related diseases. Int J Syst Evol Microbiol 54:1037–1048

    CAS  PubMed  Google Scholar 

  • Lee I-M, Bottner KD, Secor G, Rivera-Varas V (2006) ‘Candidatus Phytoplasma americanum’, a phytoplasma associated with a potato purple top wilt disease complex. Int J Syst Evol Microbiol 56:1593–1597

    CAS  PubMed  Google Scholar 

  • Lee I-M, Bottner-Parker KD, Zhao Y, Villalobos W, Moreira L (2011) ‘Candidatus Phytoplasma costaricanum’ a new phytoplasma associated with a newly emerging disease in soybean in Costa Rica. Int J Syst Evol Microbiol 61:2822–2826

    CAS  PubMed  Google Scholar 

  • Lepka P, Stitt M, Moll E, Seemüller E (1999) Effect of phytoplasmal infection on concentration and translocation of carbohydrates and amino acids in periwinkle and tobacco. Physiol Mol Plant Pathol 55:59–68

    CAS  Google Scholar 

  • Li L, Storm P, Karlsson OP, Berg S, Wieslander A (2003) Irreversible binding and activity control of the 1,2-diacylglycerol 3-glucosyltransferase from Acholeplasma laidlawii at an anionic lipid bilayer surface. Biochemistry 42:9677–9686

    CAS  PubMed  Google Scholar 

  • Liefting LW, Veerakone S, Clover RG, Ward LI (2011) An update on phytoplasma diseases in New Zealand. Bull Insectol 64:S93–S94

    Google Scholar 

  • Lin SC, Lee CS, Chin RJ (1970) Isolation and cultivation of, and inoculation with a mycoplasma causing white leaf disease of sugarcane. Phytopathology 60:795–797

    Google Scholar 

  • Lombardo G, Pignattelli P (1970) Cultivation in a cell-free medium of a mycoplasma-like organism from Vinca rosea with phyllody symptoms of the flowers. Ann Microbiol 20:83–88

    Google Scholar 

  • Lu ZJ, Markham GD (2002) Enzymatic properties of S-adenosylmethionine synthetase from the archaeon Methanococcus jannaschii. J Biol Chem 277:16624–16631

    CAS  PubMed  Google Scholar 

  • MacLean AM, Sugio A, Makarova OV, Findlay KC, Grieve VM, Tóth R, Nicolaisen M, Hogenhout SA (2011) Phytoplasma effector SAP54 induces indeterminate leaf-like flower development in Arabidopsis plants. Plant Physiol 157:831–841

    CAS  PubMed  PubMed Central  Google Scholar 

  • Magni G, Di Stefano M, Orsomando G, Raffaelli N, Ruggieri S (2009) NAD(P) biosynthesis enzymes as potential targets for selective drug design. Curr Med Chem 16:1372–1390

    CAS  PubMed  Google Scholar 

  • Marcone C, Neimark H, Ragozzino A, Lauer U, Seemüller E (1999) Chromosome sizes of phytoplasmas composing major phylogenetic groups and subgroups. Phytopathology 89:805–810

    CAS  PubMed  Google Scholar 

  • McLennan AG (2006) The Nudix hydrolase superfamily. Cell Mol Life Sci 63:123–143

    CAS  PubMed  Google Scholar 

  • Ménétret JF, Schaletzky J, Clemons WM Jr, Osborne AR, Skånland SS, Denison C, Gygi SP, Kirkpatrick DS, Park E, Ludtke SJ, Rapoport TA, Akey CW (2007) Ribosome binding of a single copy of the SecY complex: implications for protein translocation. Mol Cell 28:1083–1092

    PubMed  Google Scholar 

  • Meyer Y, Buchanan BB, Vignols F, Reichheld JP (2009) Thioredoxins and glutaredoxins: unifying elements in redox biology. Annu Rev Genet 43:335–367

    CAS  PubMed  Google Scholar 

  • Mina JG, Pan SY, Wansadhipathi NK, Bruce CR, Shams-Eldin H, Schwarz RT, Steel PG, Denny PW (2009) The Trypanosoma brucei sphingolipid synthase, an essential enzyme and drug target. Mol Biochem Parasitol 168:16–23

    CAS  PubMed  Google Scholar 

  • Moore CM, Helmann JD (2005) Metal ion homeostasis in Bacillus subtilis. Curr Opin Microbiol 8:188–195

    CAS  PubMed  Google Scholar 

  • Morton A, Davies DL, Blomquist CL, Barbara DJ (2003) Characterization of homologues of the apple proliferation immunodominant membrane protein gene from three related phytoplasmas. Mol Plant Pathol 4:109–114

    CAS  PubMed  Google Scholar 

  • Muller JP (1999) Effects of pre-protein overexpression on SecB synthesis in Escherichia coli. FEMS Microbiol Lett 176:219–227

    CAS  PubMed  Google Scholar 

  • Murray RG, Schleifer KH (1994) Taxonomic notes: a proposal for recording the properties of putative taxa of procaryotes. Int J Syst Bacteriol 44:174–176

    CAS  PubMed  Google Scholar 

  • Murray RG, Stackebrandt E (1995) Taxonomic note: implementation of the provisional status Candidatus for incompletely described procaryotes. Int J Syst Bacteriol 45:186–187

    CAS  PubMed  Google Scholar 

  • Nagiec MM, Nagiec EE, Baltisberger JA, Wells GB, Lester RL, Dickson RC (1997) Sphingolipid synthesis as a target for antifungal drugs. Complementation of the inositol phosphorylceramide synthase defect in a mutant strain of Saccharomyces cerevisiae by the AUR1 gene. J Biol Chem 272:9809–9817

    CAS  PubMed  Google Scholar 

  • Nejat N, Vadamalai G, Davis RE, Harrison NA, Sijam K, Dickinson M, Abdullah SNA, Zhao Y (2013) ‘Candidatus Phytoplasma malaysianum’, a novel taxon associated with virescence and phyllody of Madagascar periwinkle (Catharanthus roseus). Int J Syst Evol Microbiol 63:540–548

    CAS  PubMed  Google Scholar 

  • O’Farrell HC, Rife JP (2012) Staphylococcus aureus and Escherichia coli have disparate dependences on KsgA for growth and ribosome biogenesis. BMC Microbiol 12:244

    PubMed  PubMed Central  Google Scholar 

  • Oshima K, Kakizawa S, Nishigawa H, Jung HY, Wei W, Suzuki S, Arashida R, Nakata D, Miyata S, Ugaki M, Namba S (2004) Reductive evolution suggested from the complete genome sequence of a plant-pathogenic phytoplasma. Nat Genet 36:27–29

    CAS  PubMed  Google Scholar 

  • Pailler J, Aucher W, Pires M, Buddelmeijer N (2012) Phosphatidylglycerol: prolipoprotein diacylglyceryl transferase (Lgt) of Escherichia coli has seven transmembrane segments, and its essential residues are embedded in the membrane. J Bacteriol 194:2142–2151

    CAS  PubMed  PubMed Central  Google Scholar 

  • Patra T, Koley H, Ramamurthy T, Ghose AC, Nandy RK (2012) The Entner-Doudoroff pathway is obligatory for gluconate utilization and contributes to the pathogenicity of Vibrio cholerae. J Bacteriol 194:3377–3385

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pérez-Donoso AG, Sun Q, Roper MC, Greve LC, Kirkpatrick B, Labavitch JM (2010) Cell wall-degrading enzymes enlarge the pore size of intervessel pit membranes in healthy and Xylella fastidiosa-infected grapevines. Plant Physiol 152:1748–1759

    PubMed  PubMed Central  Google Scholar 

  • Pinna GG, Spano A, Carru C, Pes GM, Delogu G, Miscali AR, Zanetti S, Sisini A (1991) Peptidase activity and toxicity of strains of Pseudomonas aeruginosa. Boll Soc Ital Biol Sper 67:287–294

    CAS  PubMed  Google Scholar 

  • Pollak N, Dölle C, Ziegler M (2007) The power to reduce: pyridine nucleotides - small molecules with a multitude of functions. Biochem J 402:205–218

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pracros P, Renaudin J, Eveillard S, Mouras A, Hernould M (2006) Tomato flower abnormalities induced by stolbur phytoplasma infection are associated with changes of expression of floral development genes. Mol Plant Microbe Interact 19:62–68

    CAS  PubMed  Google Scholar 

  • Pratt S, Wansadhipathi-Kannangara NK, Bruce CR, Mina JG, Shams-Eldin H, Casas J, Hanada K, Schwarz RT, Sonda S, Denny PW (2013) Sphingolipid synthesis and scavenging in the intracellular apicomplexan parasite, Toxoplasma gondii. Mol Biochem Parasitol 187:43–51

    CAS  PubMed  PubMed Central  Google Scholar 

  • Quaglino F, Zhao Y, Bianco P, Wei W, Casati P, Durante G, Davis RE (2009) New 16Sr subgroups and distinct SNP lineages among grapevine Bois noir phytoplasma populations. Ann Appl Biol 154:279–289

    CAS  Google Scholar 

  • Quaglino F, Zhao Y, Casati P, Bulgari D, Bianco PA, Wei W, Davis RE (2013) ‘Candidatus Phytoplasma solani’, a novel taxon associated with stolbur and bois noir related diseases of plants. Int J Syst Evol Microbiol (Epub ahead of print 18 Jan 2013)

    Google Scholar 

  • Rapoport TA (2007) Protein translocation across the eukaryotic endoplasmic reticulum and bacterial plasma membranes. Nature 450:663–669

    CAS  PubMed  Google Scholar 

  • Razin S, Yogev D, Naot Y (1998) Molecular biology and pathogenicity of mycoplasmas. Microbiol Mol Biol Rev 62:1094–1156

    CAS  PubMed  PubMed Central  Google Scholar 

  • Recchia GD, Hall RM (1997) Origins of the mobile gene cassettes found in integrons. Trends Microbiol 5:389–394

    CAS  PubMed  Google Scholar 

  • Rodionov DA, Hebbeln P, Gelfand MS, Eitinger T (2006) Comparative and functional genomic analysis of prokaryotic nickel and cobalt uptake transporters: evidence for a novel group of ATP-binding cassette transporters. Bacteriol 188:317–327

    CAS  Google Scholar 

  • Saccardo F, Martini M, Palmano S, Ermacora P, Scortichini M, Loi N, Firrao G (2012) Genome drafts of four phytoplasma strains of the ribosomal group 16SrIII. Microbiology 158:2805–2814

    CAS  PubMed  Google Scholar 

  • Seemüller E, Marcone C, Lauer U, Ragozzino A, Göschl M (1998) Current status of molecular classification of the phytoplasmas. J Plant Pathol 80:3–26

    Google Scholar 

  • Shen BW, Dyer DH, Huang JY, D’Ari L, Rabinowitz J, Stoddard BL (1999) The crystal structure of a bacterial, bifunctional 5,10-methylene-tetrahydrofolate dehydrogenase/cyclohydrolase. Protein Sci 8:1342–1349

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sitkiewicz I, Nagiec MJ, Sumby P, Butler SD, Cywes-Bentley C, Musser JM (2006) Emergence of a bacterial clone with enhanced virulence by acquisition of a phage encoding a secreted phospholipase A2. Proc Natl Acad Sci USA 103:16009–16014

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sparrow CP, Raetz CR (1985) Purification and properties of the membrane-bound CDP-diglyceride synthetase from Escherichia coli. J Biol Chem 260:12084–12091

    CAS  PubMed  Google Scholar 

  • Stackebrandt E (2007) Forces shaping bacterial systematics. Microbe 2:283–288

    Google Scholar 

  • Su YT, Chen JC, Lin CP (2011) Phytoplasma-induced floral abnormalities in Catharanthus roseus are associated with phytoplasma accumulation and transcript repression of floral organ identity genes. Mol Plant Microbe Interact 24:1502–1512

    CAS  PubMed  Google Scholar 

  • Sugio A, Kingdom HN, MacLean AM, Grieve VM, Hogenhout SA (2011) Phytoplasma protein effector SAP11 enhances insect vector reproduction by manipulating plant development and defense hormone biosynthesis. Proc Natl Acad Sci USA 108:E1254–E1263

    CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki S, Oshima K, Kakizawa S, Arashida R, Jung HY, Yamaji Y, Nishigawa H, Ugaki M, Namba S (2006) Interaction between the membrane protein of a pathogen and insect microfilament complex determines insect-vector specificity. Proc Natl Acad Sci USA 103:4252–4257

    Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tran-Nguyen LT, Kube M, Schneider B, Reinhardt R, Gibb KS (2008) Comparative genome analysis of ‘Candidatus Phytoplasma australiense’ (subgroup tuf-Australia I; rp-A) and ‘Ca. Phytoplasma asteris’ Strains OY-M and AY-WB. J Bacteriol 190:3979–3991

    CAS  PubMed  PubMed Central  Google Scholar 

  • Trumbo P, Yates AA, Schlicker S, Poos M (2001) Dietary reference intakes: vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. J Am Diet Assoc 101:294–301

    CAS  PubMed  Google Scholar 

  • Van Vu B, Itoh K, Nguyen QB, Tosa Y, Nakayashiki H (2012) Cellulases belonging to glycoside hydrolase families 6 and 7 contribute to the virulence of Magnaporthe oryzae. Mol Plant Microbe Interact 25:1135–1141

    CAS  PubMed  Google Scholar 

  • Wei W, Cai H, Chen H, Davis RE, Zhao Y (2007a) First report of a natural infection of Opuntia sp. by a ‘Candidatus Phytoplasma asteris’-related phytoplasma in China. Plant Dis 91:461

    Google Scholar 

  • Wei W, Davis RE, Lee I-M, Zhao Y (2007b) Computer-simulated RFLP analysis of 16S rRNA genes: identification of ten new phytoplasma groups. Int J Syst Evol Microbiol 57:1855–1867

    CAS  PubMed  Google Scholar 

  • Wei W, Lee I-M, Davis RE, Suo X, Zhao Y (2007c) Virtual RFLP analysis of 16S rDNA sequences identifies new subgroups in the clover proliferation phytoplasma group. Bull Insectol 60:349–350

    Google Scholar 

  • Wei W, Davis RE, Jomantiene R, Zhao Y (2008a) Ancient, recurrent phage attacks and recombination events shaped dynamic sequence-variable mosaic structures at the root of phytoplasma genome evolution. Proc Natl Acad Sci USA 105:11827–11832

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wei W, Lee I-M, Davis RE, Suo X, Zhao Y (2008b) Automated RFLP pattern comparison and similarity coefficient calculation for rapid delineation of new and distinct phytoplasma 16Sr subgroup lineages. Int J Syst Evol Microbiol 58:2368–2377

    CAS  PubMed  Google Scholar 

  • Win NK, Lee SY, Bertaccini A, Namba S, Jung HY (2013) ‘Candidatus Phytoplasma balanitae’ associated with witches’ broom disease of Balanites triflora. Int J Syst Evol Microbiol 63:636–640

    CAS  PubMed  Google Scholar 

  • Yahr TL, Wickner WT (2000) Evaluating the oligomeric state of SecYEG in preprotein translocase. EMBO J 19:4393–4401

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Wang H, Hammond RW, Jomantiene R, Liu Q, Lin S, Roe BA, Davis RE (2004) Predicted ATP-binding cassette systems in the phytopathogenic mollicute Spiroplasma kunkelii. Mol Genet Genomics 271:325–338

    CAS  PubMed  Google Scholar 

  • Zhao Y, Davis RE, Lee I-M (2005) Phylogenetic positions of ‘Candidatus Phytoplasma asteris’ and Spiroplasma kunkelii as inferred from multiple sets of concatenated core housekeeping proteins. Int J Syst Evol Microbiol 55:2131–2141

    CAS  PubMed  Google Scholar 

  • Zhao Y, Sun Q, Wei W, Davis RE, Wu W, Liu Q (2009a) ‘Candidatus Phytoplasma tamaricis’, a novel taxon discovered in witches’-broom diseased salt cedar (Tamarix chinensis Lour.) Int. J. Syst. Evol. Microbiol 59:2496–2504

    CAS  Google Scholar 

  • Zhao Y, Wei W, Lee I-M, Shao J, Suo X, Davis RE (2009b) Construction of an interactive online phytoplasma classification tool, iPhyClassifier, and its application in analysis of the peach X-disease phytoplasma group (16SrIII). Int J Syst Evol Microbiol 59:2582–2593

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Wei W, Davis RE, Lee I-M (2010) Recent advances in 16S rRNA gene-based phytoplasma differentiation, classification and taxonomy. In: Weintraub P, Jones P (eds) Phytoplasmas: genomes, plant hosts and vector. CABI Publishing, Wallingford, pp 64–92

    Google Scholar 

  • Ziegler H (1975) Nature of substances in phloem. In: Zimmermann MH, Milburn JA (eds) Encyclopedia of plant physiology, transport in plants, vol 1. Springer, Berlin, pp 57–100

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert E. Davis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg (outside the USA)

About this chapter

Cite this chapter

Zhao, Y., Davis, R.E., Wei, W., Shao, J., Jomantiene, R. (2014). Phytoplasma Genomes: Evolution Through Mutually Complementary Mechanisms, Gene Loss and Horizontal Acquisition. In: Gross, D., Lichens-Park, A., Kole, C. (eds) Genomics of Plant-Associated Bacteria. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55378-3_10

Download citation

Publish with us

Policies and ethics