Skip to main content

Physics of Ferroic and Multiferroic Domain Walls

  • Chapter
  • First Online:
Mesoscopic Phenomena in Multifunctional Materials

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 198))

Abstract

Ferroic materials are defined by having an order parameter that can be oriented in more than one direction. Within a ferroic material, then, there can be regions (domains) with different orientation of the order parameter: magnetic domains in ferromagnets, polar domains in ferroelectrics, twins in ferroelastics. Domain walls, or domain boundaries, are the separations between adjacent domains. In the last few years, domain walls have moved from being regarded as an inevitable by-product of the domains, to regions of interest in their own right, with unique electronic properties that may be used as the active ingredient in new electronic device paradigms, in what has been called “domain wall nanoelectronics”. The present book chapter outlines the basic physics of domain walls from their thickness and internal structure to their properties and dynamics. We will draw the connection between the fundamental properties and their experimental observation. The last section will discuss current unresolved challenges in this exciting and emerging field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L. Landau, A.M. Lifthits, On the theory of the dispersion of magnetic permeability in ferromagnetic bodies. Phys. Zeitsch. der Sow. 8, 153–169 (1935)

    Google Scholar 

  2. C. Kittel, Theory of the structure of ferromagnetic domains in films and small particles. Phys. Rev. 70, 965–971 (1946)

    Article  Google Scholar 

  3. T. Mitsui, J. Furuichi, Domain structure of rochelle salt and KH2PO4. Phys. Rev. 90, 193–202 (1953)

    Article  Google Scholar 

  4. A.L. Roitburd, Equilibrium structure of epitaxial layers. Phys. status solidi (a) 37, 329 (1976)

    Google Scholar 

  5. G. Catalan, H. Béa, S. Fusil, M. Bibes, P. Paruch, A. Barthélémy, J.F. Scott, Fractal dimension and size scaling of domains in thin films of multiferroic BiFeO3. Phys. Rev. Lett. 100, 027602 (2008)

    Article  Google Scholar 

  6. M. Daraktchiev, G. Catalan, J.F. Scott, Landau theory of ferroelectric domain walls in magnetoelectrics. Ferroelectrics 375, 122 (2008)

    Article  Google Scholar 

  7. T. Choi, Y. Horibe, H.T. Yi, Y.J. Choi, W. Wu, S.-W. Cheong, Insulating interlocked ferroelectric and structural antiphase domain walls in multiferroic YMnO3. Nat. Mat. 9, 253 (2010)

    Article  Google Scholar 

  8. A.G. Khachaturyan, The Theory of Structural Transformations in Solids (Wiley, New York, 1983)

    Google Scholar 

  9. A.K. Tagantsev, L.E. Cross, J. Fousek, Domains in Ferroic Crystals and Thin Films (Springer, New York, 2010)

    Google Scholar 

  10. A. Hubert, R. Schafer, Magnetic Domains (Springer, Berlin, 1998)

    Google Scholar 

  11. E.K.H. Salje, Phase Transitions in Ferroelastic and Co-elastic Materials (Cambridge University Press, Cambridge, 1993)

    Google Scholar 

  12. G. Catalan, J. Seidel, R. Ramesh, J.F. Scott, Domain wall nanoelectronics. Rev. Mod. Phys. 84, 119–156 (2012)

    Article  Google Scholar 

  13. W.T. Lee, E.K.H. Salje, U. Bismayer, Influence of point defects on the distribution of twin wall widths. Phys. Rev. B 72, 104116 (2005)

    Article  Google Scholar 

  14. J. Seidel, L.W. Martin, Q. He, Q. Zhan, Y.-H. Chu, A. Rother, M.E. Hawkridge, P. Maksymovych, P. Yu, M. Gajek, N. Balke, S.V. Kalinin, S. Gemming, F. Wang, G. Catalan, J.F. Scott, N.A. Spaldin, J. Orenstein, R. Ramesh, Conduction at domain walls in oxide multiferroics. Nat. Mater. 8, 229 (2009)

    Article  Google Scholar 

  15. S.S.P. Parkin, M. Hayashi, L. Thomas, Magnetic domain-wall racetrack memory. Science 320, 190 (2008)

    Article  Google Scholar 

  16. D.A. Allwood, G. Xiong, C.C. Faulkner, D. Atkinson, D. Petit, R.P. Cowburn, Magnetic domain-wall logic. Science 309, 1688 (2005)

    Article  Google Scholar 

  17. A.Y. Borisevich, E.A. Eliseev, A.N. Morozovska, C.-J. Cheng, J.-Y. Lin, Y.H. Chu, D. Kan, I. Takeuchi, V. Nagarajan, S.V. Kalinin, Atomic-scale evolution of modulated phases at the ferroelectric–antiferroelectric morphotropic phase boundary controlled by flexoelectric interaction. Nat. Commun. 3, 775 (2012)

    Google Scholar 

  18. V.A. Zhirnov, Contribution to the theory of domain walls in ferroelectrics. Sov. Phys. JETP 35, 822 (1959)

    Google Scholar 

  19. A. Schilling, T.B. Adams, R.M. Bowman, J.M. Gregg, G. Catalan, J.F. Scott, Scaling of domain periodicity with thickness measured in BaTiO3 single crystal lamellae and comparison with other ferroics. Phys. Rev. B 74, 024115 (2006)

    Google Scholar 

  20. J. Chrosh, E.K.H. Salje, Temperature dependence of the domain wall width in LaAlO3. J. Appl. Phys. 85, 722 (1999)

    Article  Google Scholar 

  21. W. Kinase, H. Takahashi, On the 180° type domain wall of BaTiO3. J. Phys. Soc. Jpn. 12, 464 (1957)

    Article  Google Scholar 

  22. J. Padilla, W. Zhong, D. Vanderbilt, First-principles investigation of 180° domain walls in BaTiO3. Phys. Rev. B 53, R5969 (1996)

    Article  Google Scholar 

  23. L.A. Bursill, J.L. Peng, D. Feng, HREM study of [100] ferroelectric domain-walls in potassium niobate. Phil. Mag. A 48, 953 (1983)

    Article  Google Scholar 

  24. L.A. Bursill, J.L. Peng, Electron microscopic studies of ferroelectric crystals. Ferroelectrics 70, 191 (1986)

    Google Scholar 

  25. N. Floquet, C.M. Valot, M.T. Mesnier, J.C. Niepce, L. Normand, A. Thorel, R. Kilaas, Ferroelectric domain walls in BaTiO3: fingerprints in XRPD diagrams and quantitative HRTEM image analysis. J. Physique III 7, 1105 (1997)

    Article  Google Scholar 

  26. M. Foeth, A. Sfera, P. Stadelmann, P.-A. Buffat, A comparison of HREM and weak beam transmission electron microscopy for the quantitative measurement of the thickness of ferroelectric domain walls. J. Electron Microsc. 48(6), 717–723 (1999)

    Article  Google Scholar 

  27. C.L. Jia, S.B. Mi, K. Urban, I. Vrejoiu, M. Alexe, D. Hesse, Atomic-scale study of electric dipoles near charged and uncharged domain walls in ferroelectric films. Nat. Mater. 7, 57 (2008)

    Article  Google Scholar 

  28. D. Shilo, G. Ravichandran, K. Bhattacharya, Investigation of twin-wall structure at the nanometre scale using atomic force microscopy. Nat. Mat. 3, 453–457 (2004)

    Article  Google Scholar 

  29. W.T. Lee, E.K.H. Salje, Chemical turnstile. Appl. Phys. Lett. 87, 143110 (2005)

    Article  Google Scholar 

  30. M.Y. Gureev, A.K. Tagantsev, N. Setter, Head-to-head and tail-to-tail 180° domain walls in an isolated ferroelectric. Phys. Rev. B 83, 184104 (2011)

    Google Scholar 

  31. M. Daraktchiev, G. Catalan, J.F. Scott, Landau theory of domain wall magnetoelectricity. Phys. Rev. B 81, 224118 (2010)

    Article  Google Scholar 

  32. J. Fousek, V. Janovec, The orientation of domain walls in twinned ferroelectric crystals. J. Appl. Phys. 40, 135 (1969)

    Article  Google Scholar 

  33. J. Fousek, Permissible domain walls in ferroelectric species. Czech J. Phys. 9, 955 (1971)

    Article  Google Scholar 

  34. P. Marton, I. Rychetsky, J. Hlinka, Domain walls of ferroelectric BaTiO3 within the Ginzburg-Landau-Devonshire phenomenological model. Phys. Rev. B 81, 144125 (2010)

    Article  Google Scholar 

  35. A. Lubk, S. Gemming, N.A. Spaldin, First-principles study of ferroelectric domain walls in multiferroic bismuth ferrite. Phys. Rev. B 80, 104110 (2009)

    Article  Google Scholar 

  36. O. Diéguez, P. Aguado-Puente, J. Junquera, J. Íñiguez, Domain walls in a perovskite oxide with two primary structural order parameters: First-principles study of BiFeO3. Phys. Rev. B 87, 024102 (2013)

    Article  Google Scholar 

  37. J. Privratska, V. Janovec, Pyromagnetic domain walls connecting antiferromagnetic non-ferroelastic magnetoelectric domains. Ferroelectrics 204, 321 (1997)

    Article  Google Scholar 

  38. J. Privratska, V. Janovec, Spontaneous polarization and/or magnetization in non-ferroelastic domain walls: symmetry predictions. Ferroelectrics 222, 23 (1999)

    Article  Google Scholar 

  39. J. Privratska, Possible appearance of spontaneous polarization and/or magnetization in domain walls associated with non-magnetic and non-ferroelectric domain pairs. Ferroelectrics 353, 116 (2007)

    Article  Google Scholar 

  40. P. Marton, I. Rychetsky, J. Hlinka, Phys. Rev. B 84, 139906(E) (2011)

    Google Scholar 

  41. J. Lajzerowicz, J.J. Niez, Phase transition in a domain wall. Journal de Physique Lettres 40, L165 (1979)

    Article  Google Scholar 

  42. V. Stepkova, P. Marton, J. Hlinka, Stress-induced phase transition in ferroelectric domain walls of BaTiO3. J. Phys.: Cond. Matter 24, 212201 (2012)

    Google Scholar 

  43. G. Catalan, On the link between octahedral rotations and conductivity in the domain walls of BiFeO3. Ferroelectrics 433, 65–73 (2012)

    Article  Google Scholar 

  44. A. Aird, E.K.H. Salje, Sheet superconductivity in twin walls: experimental evidence of WO3-x. J. Phys. Cond. Mat. 10, L377 (1998)

    Article  Google Scholar 

  45. L. He, D. Vanderbilt, First-principles study of oxygen-vacancy pinning of domain walls in PbTiO3. Phys. Rev. B 68, 134103 (2003)

    Article  Google Scholar 

  46. N. Domingo, J. Narvaez, M. Alexe, G. Catalan, Local properties of the surface layer(s) of BiFeO3 single crystals. J. Appl. Phys. 113, 187220 (2013)

    Google Scholar 

  47. D.A. Huse, C.L. Henley, D.S. Fisher, Huse, Henley, and Fisher respond. Phys. Rev. Lett. 55, 2924 (1985)

    Google Scholar 

  48. M. Kardar, D.R. Nelson, Commensurate-incommensurate transitions with quenched random impurities. Phys. Rev. Lett. 55, 1157 (1985)

    Google Scholar 

  49. S. Lemerle, J. Ferré, C. Chappert, V. Mathet, T. Giamarchi, P. Le Doussal, Domain wall creep in an ising ultrathin magnetic film. Phys. Rev. Lett. 80, 849–852 (1998)

    Article  Google Scholar 

  50. T. Tybell, P. Paruch, T. Giamarchi, J.-M. Triscone, Domain wall creep in epitaxial ferroelectric Pb(Zr0.2Ti0.8)O3 thin films. Phys. Rev. Lett. 89, 097601 (2002)

    Article  Google Scholar 

  51. D.S. Fisher, Interface fluctuations in disordered systems: 5-ε expansion and failure of dimensional reduction. Phys. Rev. Lett. 56, 1964 (1986)

    Google Scholar 

  52. P. Paruch, T. Giamarchi, J.-M. Triscone, Domain wall roughness in epitaxial ferroelectric PbZr0:2Ti0:8O3 thin films. Phys. Rev. Lett. 94, 197601 (2005)

    Article  Google Scholar 

  53. Li Yin-Yuan, Domain walls in antiferromagnets and the weak ferromagnetism of α-Fe2O3. Phys. Rev. 101, 1450 (1956)

    Article  Google Scholar 

  54. V. Janovec, L. Richterová, J. Privratska, Polar properties of compatible ferroelastic domain walls. Ferroelectrics 222, 331 (1999)

    Article  Google Scholar 

  55. L. Gonçalves-Ferreira, S.A.T. Redfern, E. Artacho, E.K.H. Salje, Ferrielectric twin walls in CaTiO3. Phys. Rev. Lett. 101, 097602 (2008)

    Article  Google Scholar 

  56. A.K. Tagantsev, E. Courtens, L. Arzel, Prediction of a low-temperature ferroelectric instability in antiphase domain boundaries of strontium titanate. Phys. Rev. B 64, 224107 (2001)

    Article  Google Scholar 

  57. P. Zubko, G. Catalan, A. Buckley, P.R.L. Welche, J.F. Scott, Strain-gradient-induced polarization in SrTiO3 single crystals. Phys. Rev. Lett. 99, 167601 (2007)

    Article  Google Scholar 

  58. S. Van Aert, S. Turner, R. Delville, D. Schryvers, G. Van Tendeloo, E.K.H. Salje, Direct observation of ferrielectricity at ferroelastic domain boundaries in CaTiO3 by electron microscopy. Adv. Mater. 24, 523 (2012)

    Article  Google Scholar 

  59. A.V. Goltsev, R.V. Pisarev, Th. Lottermoser, M. Fiebig, Structure and interaction of antiferromagnetic domain walls in hexagonal YMnO3. Phys. Rev. Lett. 90, 177204 (2003)

    Google Scholar 

  60. C.J.M. Daumont, S. Venkatesan, B.J. Kooi, J.Th.M. De Hosson, B. Noheda, Domain wall magnetism in thin films of orthorhombic manganites. arXiv:1008.0315v3 (2010)

    Google Scholar 

  61. H. Béa, M. Bibes, F. Ott, B. Dupé, X.-H. Zhu, S. Petit, S. Fusil, C. Deranlot, K. Bouzehouane, A. Barthélémy, Mechanisms of exchange bias with multiferroic BiFeO3 epitaxial thin films. Phys. Rev. Lett. 100, 017204 (2008)

    Article  Google Scholar 

  62. Y. Geng, N. Lee, Y.J. Choi, S.-W. Cheong, W. Wu, Collective magnetism at multiferroic vortex domain walls. Nano Lett. 12, 6055 (2012)

    Google Scholar 

  63. A.S. Logginov, G.A. Meshkov, A.V. Nikolaev, E.P. Nikolaeva, A.P. Pyatakov, A.K. Zvezdin, Room temperature magnetoelectric control of micromagnetic structure in iron garnet films. Appl. Phys. Lett. 93, 182510 (2008)

    Article  Google Scholar 

  64. B. Houchmandzadeh, J. Lajzerowicz, E.K.H. Salje, Order parameter coupling and chirality of domain walls. J. Phys.: Condens. Matter 3, 5163 (1991)

    Google Scholar 

  65. J. Hlinka, P. Ondrejkovic, P. Marton, The piezoelectric response of nanotwinned BaTiO3. Nanotechnology 20, 105709 (2009)

    Article  Google Scholar 

  66. S. Wada, K. Yako, K. Yokoo, H. Kakemoto, T. Tsurumi, Domain wall engineering in barium titanate single crystals for enhanced piezoelectric properties. Ferroelectrics 334, 17 (2006)

    Article  Google Scholar 

  67. A. Fouskova, The increase in permittivity of ferroelectrics as a consequence of the polarization reversal process. Part II. Theory. J. Phys. Soc. Jpn. 20, 1625–1632 (1965)

    Article  Google Scholar 

  68. R. Palai, R.S. Katiyar, H. Schmid, P. Tissot, S.J. Clark, J. Robertson, S.A.T. Redfern, G. Catalan, J.F. Scott, β phase and γ-β metal-insulator transition of multiferroic bismuth ferrite. Phys. Rev. B 77, 014110 (2008)

    Article  Google Scholar 

  69. V. Gopalan, V. Dierolf, D.A. Scrymgeour, defect–domainwall interactions in trigonal ferroelectrics. Ann. Rev. Mater. Res. 37, 449–489 (2007)

    Article  Google Scholar 

  70. Y. Xiao, V.B. Shenoy, K. Bhattacharya, Depletion layers and domain walls in semiconducting ferroelectric thin films. Phys. Rev. Lett. 95, 247603 (2005)

    Article  Google Scholar 

  71. P. Zubko, Private Communication (2013)

    Google Scholar 

  72. E.A. Eliseev, A.N. Morozovska, G.S. Svechnikov, V. Gopalan, V.Ya. Shur, Static conductivity of charged domain walls in uniaxial ferroelectric semiconductors. Phys. Rev. B 83, 235313 (2011)

    Google Scholar 

  73. D. Meier, J. Seidel, A. Cano, K. Delaney, Y. Kumagai, M. Mostovoy, N.A. Spaldin, R. Ramesh, M. Fiebig, Anisotropic conductance at improper ferroelectric domain walls. Nat. Mater. 11, 284 (2012)

    Article  Google Scholar 

  74. S. Farokhipoor, B. Noheda, Conduction through 71º domain walls in BiFeO3 thin films. Phys. Rev. Lett. 107, 127601 (2011)

    Article  Google Scholar 

  75. Q. He, C.-H. Yeh, J.-C. Yang, G. Singh-Bhalla, C.-W. Liang, P.-W. Chiu, G. Catalan, L.W. Martin, Y.-H. Chu, J.F. Scott, R. Ramesh, Magnetotransport at domain walls in BiFeO3. Phys. Rev. Lett. 108, 067203 (2012)

    Article  Google Scholar 

  76. N. Bassiri-Gharb, I. Fujii, E. Hong, S. Trolier-McKinstry, D.V. Taylor, D. Damjanovic, Domain wall contributions to the properties of piezoelectric thin films. J. Electroceram. 19, 47 (2007)

    Google Scholar 

  77. A. Pakhomov, I. Luk’yanchuk, A. Sidorkin, Frequency dependence of the dielectric permittivity in ferroelectric thin films with 180° domain structure. Ferroelectrics, 444, 177–182 (2013)

    Google Scholar 

  78. V. Skumryev, V. Laukhin, I. Fina, X. Marti, F. Sanchez, M. Gospodinov, J. Fontcuberta, Magnetization reversal by electric-field decoupling of magnetic and ferroelectric domain walls in multiferroic-based heterostructures. Phys. Rev. Lett. 106, 057206 (2011)

    Article  Google Scholar 

  79. C.T. Nelson et al., Domain dynamics during ferroelectric switching. Science 334, 968–971 (2011)

    Article  Google Scholar 

  80. A. Gruverman, B.J. Rodriguez, C. Dehoff, J.D. Waldrep, A.I. Kingon, R.J. Nemanich, J.S. Cross, Direct studies of domain switching dynamics in thin film ferroelectric capacitors. Appl. Phys. Lett. 87, 082902 (2005)

    Article  Google Scholar 

  81. A. Gruverman, D. Wu, J.F. Scott, Piezoresponse force microscopy studies of switching behavior of ferroelectric capacitors on a 100-ns time scale. Phys. Rev. Lett. 100, 097601 (2008)

    Article  Google Scholar 

  82. H. Lu, C.-W. Bark, D. Esque de los Ojos, J. Alcala, C. B. Eom, G. Catalan, A. Gruverman, Mechanical writing of ferroelectric polarization. Science 336, 59–61 (2012)

    Google Scholar 

  83. M. Bartels, V. Hagen, M. Burianek, M. Getzlaff, U. Bismayer, R. Wiesendanger, Impurity-induced resistivity of ferroelastic domain walls in doped lead phosphate. J. Phys.: Condens. Matter 15, 957–962 (2003)

    Google Scholar 

  84. P. Zubko, G. Catalan, A.K. Tagantsev, Flexoelectric effect in solids. Annu. Rev. Mater. Res. 43, 387–421 (in press, 2013). doi:10.1146/annurev-matsci-071312-121634

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustau Catalan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Catalan, G. (2014). Physics of Ferroic and Multiferroic Domain Walls. In: Saxena, A., Planes, A. (eds) Mesoscopic Phenomena in Multifunctional Materials. Springer Series in Materials Science, vol 198. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55375-2_9

Download citation

Publish with us

Policies and ethics