Skip to main content

Imaging of Domains and Vortices in Multifunctional Materials

  • Chapter
  • First Online:
Mesoscopic Phenomena in Multifunctional Materials

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 198))

Abstract

In this chapter, we describe a series of observations of magnetic domain wall configurations in a Ni2-Mn-Ga––type ferromagnetic shape memory alloy. First we introduce the technique of phase reconstructed Lorentz transmission electron microscopy, both the classical approach and the quantum mechanical determination of the electron wave phase shift using the Transport-of-Intensity Equation formalism. Then we apply this technique to domain wall observations in several phases, including the austenitic state and the (modulated) martensitic state. We conclude the chapter with a preliminary analysis of a magnetization state that is best described as a nearly regular array of magnetic vortices, pinned by martensite variant boundaries (twin boundaries). The magnetization configuration is only observed when the twins are finely spaced, and is likely due to the interaction of the magnetic and strain order parameters in this system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. De Graef, Introduction to Conventional Transmission Electron Microscopy (Cambridge University Press, Cambridge, 2003)

    Google Scholar 

  2. J. Howe, B. Fultz, Transmission Electron Microscopy and Diffractometry of Materials (Springer, Berlin, 2001)

    Google Scholar 

  3. D. Williams, C. Carter, Transmission Electron Microscopy, a Textbook for Materials Science (Plenum Press, New York, 1996)

    Book  Google Scholar 

  4. A. Barty, D. Paganin, K. Nugent, in Magnetic Microscopy and its Applications to Magnetic Materials (Academic Press, New York, 2000), chap. 5

    Google Scholar 

  5. V. Volkov, Y. Zhu, M. De Graef, Micron 33, 411 (2002)

    Article  Google Scholar 

  6. D. Paganin, K. Nugent, Phys. Rev. Lett. 80, 2586 (1998)

    Article  Google Scholar 

  7. R. McCormack, D. de Fontaine, Phys. Rev. B 54, 9746 (1996)

    Article  Google Scholar 

  8. R. Overholser, M. Wuttig, D. Neumann, Scripta Mater. 40, 1095 (1999)

    Article  Google Scholar 

  9. S. Venkateswaran, N. Nuhfer, M. De Graef, Acta Mater. 55, 2621 (2007)

    Article  Google Scholar 

  10. K. Ullakko, J. Huang, C. Kantner, R. O’Handley, V. Kokorin, Appl. Phys. Lett. 69, 1966 (1996)

    Article  Google Scholar 

  11. M. De Graef, in Magnetic Microscopy and its Applications to Magnetic Materials, Experimental Methods in the Physical Sciences, vol. 36, ed. by M. De Graef, Y. Zhu (Academic Press, New York, 2000), chap. 2

    Google Scholar 

  12. J. Chapman, I. McFadyen, S. McVitie, IEEE Trans. Magn. 26, 1506 (1990)

    Article  Google Scholar 

  13. A. Daykin, A. Petford-Long, Ultramicroscopy 58, 365 (1995)

    Article  Google Scholar 

  14. J. Dooley, N. Nuhfer, M. De Graef, in Proceedings of the Annual Meeting of the Microscopy Society of America, ed. by G. Bailey, M. Ellisman, R. Hennigar, N. Zaluzec (Jones and Begell Publishing, New York, 1995), pp. 482–483

    Google Scholar 

  15. C. Phatak, M. De Graef, Microscopy Today 15, 24 (2007)

    Google Scholar 

  16. Y. Aharonov, D. Bohm, Phys. Rev. 115, 485 (1959)

    Article  Google Scholar 

  17. M. Mansuripur, J. Appl. Phys. 69(4), 2455 (1991)

    Article  Google Scholar 

  18. M. Beleggia, Y. Zhu, Phil. Mag. 83, 1045 (2003)

    Article  Google Scholar 

  19. E. Humphrey, M. De Graef, Ultramicroscopy 129, 36 (2013)

    Article  Google Scholar 

  20. B. Lilley, Phil. Mag. 41, 792 (1950)

    Google Scholar 

  21. N. Neronova, N. Belov, Sov. Phys. -Cryst 6, 672 (1961)

    Google Scholar 

  22. E. Völkl, L. Allard, D. Joy (eds.), Introduction to Electron Holography (Kluwer Academic/ Plenum Publishers, New York, 1999)

    Google Scholar 

  23. M. Beleggia, M. Schofield, V. Volkov, Y. Zhu, Ultramicroscopy 102, 37 (2004)

    Article  Google Scholar 

  24. M. Beleggia, S. Tandon, Y. Zhu, M. De Graef, Phil. Mag. B 83, 1143 (2003)

    Article  Google Scholar 

  25. C. Phatak, M. Tanase, A. Petford-Long, M. De Graef, Ultramicroscopy, [http://dx.doi.org/10.1016/j.ultramic.2008.11.003] (2008)

  26. H. Park, Y. Murakami, K. Yanagisawa, T. Matsuda, R. Kainuma, D. Shindo, A. Tonomura, Adv. Funct. Mater. 22, 3434 (2012)

    Article  Google Scholar 

  27. L. Righi, F. Albertini, L. Pareti, A. Paoluzi, G. Calestani, Acta Mater. 55, 5237 (2007)

    Article  Google Scholar 

  28. G. Mogylnyy, I. Glavatskyy, N. Glavatska, O. Soderberg, V.K. Lindroos, Scripta Mater. 48(10), 1427 (2003)

    Article  Google Scholar 

  29. C. Phatak, A. Petford-Long, M. De Graef, Phys. Rev. Lett. 104, 253901 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge stimulating interactions with A. Budruk, S. Venkateswaran, A. Petford-Long, and S. Hua, The experimental portion of this work was funded by the National Science Foundation (grant # DMR-1005530); for the theoretical and simulation work, we acknowledge an AFOSR-MURI grant (# FA9550-12-1-0458). Part of this work was completed while MDG was on sabbatical leave at the Ohio State University, Columbus, OH. A part of this work was carried out at Argonne National Laboratory, a US Department of Energy, Office of Science Laboratory operated under contract DE-AC02-06CH11357 by University of Chicago Argonne, LLC. The funding for the JEOL Lorentz TEM was provided by US DOE, Division of Materials Science and Engineering, Office of Basic Energy Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc De Graef .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Phatak, C., De Graef, M. (2014). Imaging of Domains and Vortices in Multifunctional Materials. In: Saxena, A., Planes, A. (eds) Mesoscopic Phenomena in Multifunctional Materials. Springer Series in Materials Science, vol 198. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55375-2_6

Download citation

Publish with us

Policies and ethics