Skip to main content

High Resolution Imaging Techniques for Understanding of Mesoscopic Phenomena

  • Chapter
  • First Online:
Mesoscopic Phenomena in Multifunctional Materials

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 198))

  • 1402 Accesses

Abstract

Transmission electron microscopy (TEM) is a particularly useful tool for studies of mesoscopic phenomena in multifunctional materials. Widely used in experiments in physics, chemistry, biology and materials science, TEM provides various methods for achieving real-space imaging of structures over a wide range of length scales, from atomic columns to macroscopic domain structures. In addition, using the interference of electron waves enables us to carry out high-resolution magnetic imaging, such as direct observation of magnetic flux lines in a thin-foil specimen and determination of important magnetic parameters (e.g., magnetocrystalline anisotropy constant) from a nanometer-scale area. In this chapter, we explain the essence of several methods related to electron microscopy, including energy-filtered electron diffraction, high-resolution TEM (methods for lattice imaging), the classical dark-field method, Lorentz microscopy, and electron holography. These methods provide essential information for a deeper understanding of mesoscopic structures produced in crystalline solids, and the mechanisms underlying material functionalities induced by the mesoscopic phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L. Reimer, H. Kohl, Transmission Electron Microscopy (Springer, New York, 2007)

    Google Scholar 

  2. P. Hirsch, A. Howie, R. Nicholson, D.W. Pashley, M.J. Whelan, Electron Microscopy of Thin Crystals (Krieger Pub. Co., Malabar, Florida, 1977)

    Google Scholar 

  3. D. Shindo, K. Hiraga, High-Resolution Electron Microscopy for Materials Science (Springer-Verlag, Tokyo, 1998)

    Book  Google Scholar 

  4. Y. Murakami, D. Shindo, Lattice modulation preceding to the R-phase transformation in a Ti50Ni48Fe2 alloy studied by TEM with energy-filtering. Mater. Trans. JIM 40, 1092 (1999)

    Article  Google Scholar 

  5. Y. Murakami, D. Shindo, Change in microstructure near the R-phase transformation in Ti50Ni48Fe2 studied by in-situ electron microscopy. Philos. Mag. Lett. 81, 631 (2001)

    Article  Google Scholar 

  6. Y. Murakami, D. Shindo, Recent advances in domain analysis. Mater. Trans. 46, 743 (2005)

    Article  Google Scholar 

  7. A. Tonomura, Electron Holography (Springer-Verlag, Berlin, 1999)

    Book  Google Scholar 

  8. M. De Graef, Y. Zhu, Magnetic Imaging and its Applications to Materials (Academic Press, San Diego, 2001)

    Google Scholar 

  9. E. Völkl, L.F. Allard, D.C. Joy, Introduction to Electron Holography (Kluwer Academic/Plenum Publisher, New York, 1999)

    Book  Google Scholar 

  10. Y. Murakami, H. Kasai, J.J. Kim, S. Mamishin, D. Shindo, S. Mori, A. Tonomura, Ferromagnetic domain nucleation and growth in colossal magnetoresistive manganite. Nature Nanotechnol. 5, 37 (2010)

    Article  Google Scholar 

  11. Y. Murakami, Y. Yanagisawa, K. Niitsu, H.S. Park, T. Matsuda, R. Kainuma, D. Shindo, A. Tonomura, Determination of magnetic flux density at the nanometer-scale antiphase boundary in Heusler alloy Ni50Mn25Al12.5Ga12.5. Acta Mater. 61, 2095 (2013)

    Article  Google Scholar 

  12. K. Otsuka, X. Ren, Physical metallurgy of Ti-Ni-based shape memory alloys. Prog. Mater. Sci. 50, 511 (2005)

    Article  Google Scholar 

  13. G.D. Sandrock, A.J. Perkins, R.F. Hehemann, The premartensitic instability in near-equiatomic TiNi. Metall. Trans. 2, 2769 (1971)

    Article  Google Scholar 

  14. V.G. Pushin, L.I. Yurchenko, V.N. Kachin, L.Yu. Ivanova, A.Yu. Sokolova, Microstructure and physical properties of Ti50Ni50-xFex shape memory alloys: I. X-ray diffraction study and resistivity of the alloys. Phys. Met. Metall. 79, 158 (1995)

    Google Scholar 

  15. C.M. Hwang, M. Meichle, M.B. Salamon, C.M. Wayman, Transformation behaviour of a Ti50Ni47Fe3 alloy I. Premartensitic phenomena and the incommensurate phase. Philos. Mag. 47, 9 (1983)

    Article  Google Scholar 

  16. D. Schryvers, P.L. Potapov, R-phase structure refinement using electron diffraction data. Mater. Trans. 43, 774 (2002)

    Article  Google Scholar 

  17. D. Shindo, Y. Murakami, Advanced transmission electron microscopy on premartensitic state of Ti50Ni48Fe2. Sci. Technol. Adv. Mater. 1, 117 (2000)

    Article  Google Scholar 

  18. S.K. Satija, S.M. Shapiro, M.B. Salamon, C.M. Wayman, Phonon softening in Ni46.8Ti50Fe3.2. Phys. Rev. B 29, 6031 (1984)

    Article  Google Scholar 

  19. J. Zhang, X. Ren, K. Otsuka, K. Tanaka, Yu.I. Chumlyakov, M. Asai, Elastic constants of Ti-48at%Ni-2at%Fe single crystal prior to B2-R transformation. Mater. Trans. JIM 40, 385 (1999)

    Article  Google Scholar 

  20. S.M. Shapiro, Y. Noda, T. Fujii, Y. Yamada, X-ray investigation of the premartensitic phase in Ni46.8Ti50Fe3.2. Phys. Rev. B 30, 4314 (1984)

    Article  Google Scholar 

  21. M.B. Salamon, M.E. Meichle, C.M. Wayman, Premartensitic phases in Ti50Ni47Fe3. Phys. Rev. B 31, 7306 (1985)

    Article  Google Scholar 

  22. M.S. Choi, T. Fukuda, T. Kakeshita, H. Mori, Incommensurate-commensurate transition and nanoscale domain-like structure in iron doped Ti-Ni shape memory alloys. Philos. Mag. 86, 67 (2006)

    Article  Google Scholar 

  23. M.S. Choi, T. Fukuda, T. Kakeshita, Anomalies in resistivity, magnetic susceptibility and specific heat in iron-doped Ti-Ni shape memory alloys. Scr. Mater. 53, 869 (2005)

    Article  Google Scholar 

  24. X. Ren, in Strain glass and strain glass transition, Chapter 11, ed, by. T. Kakeshita, T. Fukuda, A. Saxena, A. Planes. Disorder and Strain-induced Complexity in Functional Materials (Springer-Verlag, Berlin, 2012)

    Google Scholar 

  25. T. Yamamoto, T. Fukuda, T. Kakeshita, Electronic structure of B2-type Ti-Ni-Fe alloys exhibiting second-order-like structural transformation. Mater. Trans. 47, 1 (2006)

    Google Scholar 

  26. T. Hara, T. Ohba, E. Okunishi, K. Otsuka, Structural study of R-phase in Ti-50.23at%Ni and Ti-47.75at%Ni-1.50at%Fe alloys. Mater. Trans., JIM 38, 11 (1997)

    Article  Google Scholar 

  27. T. Ohba, Y. Emura, K. Otsuka, Structure determination of the ζ2’ martensite and the mechanism of β2→ ζ2’ transformation in a Au-49.5at%Cd alloy. Mater. Trans., JIM 33, 29 (1992)

    Article  Google Scholar 

  28. T. Fukuda, T. Saburi, K. Doi, S. Nenno, Nucleation and self-accommodation of the R-phase in Ti-Ni alloys. Mater. Trans., JIM 33, 271 (1992)

    Article  Google Scholar 

  29. K. Enami, T. Yoshida, S. Nenno, in Premartensitic and martensitic transformations in TiPd-Fe alloys. Proceedings of International Conference on Martensitic Transformations, Nara (1986), p 103

    Google Scholar 

  30. Y. Murakami, H. Shibuya, D. Shindo, Precursor effects of martensitic transformations in Ti-based alloys studied by electron microscopy with energy filtering. J. Microsc. 203, 22 (2001)

    Article  Google Scholar 

  31. Y. Murakami, S. Kidu, D. Shindo, Precursor state in a Ti50Pd34Fe16 alloy studied by advanced transmission electron microscopy. J. de Phys. IV 112, 1031 (2003)

    Google Scholar 

  32. M. Todai, T. Fukuda, T. Kakeshita, Premartensitic state of Ti-Pd-Fe shape memory alloys studied by electrical resistivity, magnetic susceptibility and specific heat measurements. Mater. Trans. 51, 906 (2010)

    Article  Google Scholar 

  33. K. Ullakko, J.K. Huang, C. Kantner, R.C. O’Handley, V.V. Kokorin, Large magnetic-field-induced strains in Ni2MnGa single crystals. Appl. Phys. Lett. 69, 1966 (1996)

    Article  Google Scholar 

  34. S. Jin, T.H. Tiefel, M. McCormack, R.A. Fastnacht, R. Ramesh, L.H. Chen, Thousandfold change in resistivity in magnetoresistive La-Ca-Mn-O films. Science 264, 413 (1994)

    Article  Google Scholar 

  35. Y. Tokura, A. Urushibara, Y. Moritomo, T. Arima, A. Asamitsu, G. Kido, N. Furukawa, Giant magnetotransport phenomena in filling-controlled Kondo lattice system: La1-x Sr x MnO3. J. Phys. Soc. Jpn. 63, 3931 (1994)

    Article  Google Scholar 

  36. D. Shindo, Y. Murakami, Electron holography of magnetic materials. J. Phys. D Appl. Phys. 41, 183002 (2008)

    Article  Google Scholar 

  37. J.N. Chapman, E.M. Waddell, P.E. Batson, R.P. Ferrier, The Fresnel mode of Lorentz microscopy using a scanning transmission electron microscope. Ultramicroscopy 4, 283 (1979)

    Google Scholar 

  38. H. Lichte, M. Lehmann, Electron holography—basics and applications. Rep. Prog. Phys. 71, 016102 (2008)

    Article  Google Scholar 

  39. R. Dunin-Borkowski, M. McCartney, in Off-axis electron holography of nanostructured magnetic materials (Chapter 7), ed. by H.S. Nalwa. Magnetic Nanostructures (American Scientific Publishing, Stevenson Ranch, 2002)

    Google Scholar 

  40. Y. Murakami, J.H. Yoo, D. Shindo, T. Atou, M. Kikuchi, Magnetization distribution in the mixed-phase state of hole-doped manganites. Nature 423, 965 (2003)

    Article  Google Scholar 

  41. M. Uehara, S. Mori, C.H. Chen, S.-W. Cheong, Percolative phase separation underlies colossal magnetoresistance in mixed-valent manganites. Nature 399, 560 (1999)

    Article  Google Scholar 

  42. K.H. Kim, M. Uehara, C. Hess, P.A. Sharma, S.-W. Cheong, Thermal and electronic transport properties and two-phase mixtures in La5/8-xPrxCa3/8MnO3. Phys. Rev. Lett. 84, 2961 (2000)

    Article  Google Scholar 

  43. L. Ghivelder, F. Parisi, Dynamic phase separation in La5/8−y Pr y Ca3/8MnO3. Phys. Rev. B 71, 184425 (2005)

    Article  Google Scholar 

  44. V. Yu. Pomjakushin, D.V. Sheptyakov, K. Conder, E.V. Pomjakushina, A.M. Balagurov, Effect of oxygen isotope substitution and crystal microstructure on magnetic ordering and phase separation in (La1-yPry)0.7Ca0.3MnO3, Phys. Rev. B 75, 054410 (2007)

    Google Scholar 

  45. W. Wu, C. Israel, N.J. Hur, S.Y. Park, S.-W. Cheong, A. de Lozanne, Magnetic imaging of a supercooling glass transition in a weakly disordered ferromagnet. Nat. Mater. 5, 881 (2006)

    Article  Google Scholar 

  46. Y. Tokura, Colossal Magnetoresistive Oxides (Gordon and Breach Science Publishers, Amsterdam, 2000)

    Google Scholar 

  47. N. Mathur, P. Littlewood, Mesoscopic texture in manganites. Phys. Today 56, 25 (2003)

    Article  Google Scholar 

  48. E. Dagotto, Nanoscale Phase Separation and Colossal Magnetoresistance (Springer-Verlag, Berlin, 2003)

    Book  Google Scholar 

  49. A. Hubert, R. Schäfer, Magnetic Domains (Springer-Verlag, Berlin, 2000)

    Google Scholar 

  50. N.D. Mathur, M.-H. Jo, J.E. Evetts, M.G. Blamire, Magnetic anisotropy of thin film La0.7Ca0.3MnO3 on untwinned paramagnetic NdGaO3 (001). J. Appl. Phys. 89, 3388 (2001)

    Article  Google Scholar 

  51. J.W. Lynn, R.W. Erwin, J.A. Borchers, Q. Huang, A. Santoro, J.-L. Peng, Z.Y. Li, Unconventional ferromagnetic transition in La1-xCaxMnO3. Phys. Rev. Lett. 76, 4046 (1996)

    Article  Google Scholar 

  52. R. Kainuma, Y. Imano, W. Ito, Y. Sutou, H. Morito, S. Okamoto, O. Kitakami, K. Oikawa, A. Fujita, T. Kanomata, K. Ishida, Magnetic-field-induced shape recovery by reverse phase transformation. Nature 439, 957 (2006)

    Article  Google Scholar 

  53. R.D. James, M. Wuttig, Magnetostriction of martensite. Philos. Mag. A 77, 1273 (1998)

    Article  Google Scholar 

  54. T. Kakeshita, T. Takeuchi, T. Fukuda, M. Tsujiguchi, T. Saburi, R. Oshima, S. Muto, Giant magnetostriction in an ordered Fe3Pt single crystal exhibiting a martensitic transformation. Appl. Phys. Lett. 77, 1502 (2000)

    Article  Google Scholar 

  55. V.A. Chernenko, V.A. L'vov, S.P. Zagorodnyuk, T. Takagi, Ferromagnetism of thermoelastic martensites: Theory and experiment. Phys. Rev. B 67, 064407 (2003)

    Article  Google Scholar 

  56. A. Planes, L. Manosa, A. Saxena (eds.), Magnetism and Structure in Functional Materials (Springer, Berlin, 2005)

    Google Scholar 

  57. H.E. Karaca, I. Karaman, B. Basaran, Y.I. Chumlyakov, H.J. Maier, Magnetic field and stress induced martensite reorientation in NiMnGa ferromagnetic shape memory alloy single crystals. Acta Mater. 54, 233 (2006)

    Article  Google Scholar 

  58. H. Ishikawa, R.Y. Umetsu, K. Kobayashi, A. Fujita, R. Kainuma, K. Ishida, Atomic ordering and magnetic properties in Ni2Mn(GaxAl1-x) Heusler alloys. Acta Mater. 56, 4789 (2008)

    Article  Google Scholar 

  59. R.Y. Umetsu, H. Ishikawa, K. Kobayashi, A. Fujita, K. Ishida, R. Kainuma, Effects of the antiferromagnetic anti-phase domain boundary on the magnetization processes in Ni2Mn(Ga0.5Al0.5) Heusler alloy. Scr. Mater. 65, 41 (2011)

    Article  Google Scholar 

  60. T. Yano, Y. Murakami, R. Kainuma, D. Shindo, Interaction between magnetic domain walls and antiphase boundaries in Ni2Mn(Al, Ga) studied by electron holography and Lorentz microscopy. Mater. Trans. 48, 2636 (2007)

    Article  Google Scholar 

  61. S.P. Venkateswaran, N.T. Nuhfer, M. De Graef, Anti-phase boundaries and magnetic domain structures in Ni2MnGa-type Heusler alloys. Acta Mater. 55, 2621 (2007)

    Article  Google Scholar 

  62. Y. Murakami, T. Yano, R.Y. Umetsu, R. Kainuma, D. Shindo, Suppression of ferromagnetism within antiphase boundaries in Ni50Mn25Al12.5Ga12.5 alloy. Scr. Mater. 65, 895 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

The experimental results presented in this chapter were acquired in collaboration with researchers at Tohoku University, RIKEN, Okinawa Institute of Science and Technology (OIST), Osaka Prefecture University, Japan Science and Technology Agency (JST), Hitachi Ltd., and JEOL Co. The author expresses his sincere gratitude to Prof. D. Shindo, Prof. R. Kainuma, Prof. R. Y. Umetsu, Dr. T. Yano, Mr. K. Niitsu, Ms. S. Kidu (Tohoku), Dr. A. Tonomura (RIKEN, OIST, Hitachi), Mr. H. Kasai, Dr. J. J. Kim, Mr. S. Mamishin, Mr. K. Yanagisawa (OIST), Prof. S. Mori (Osaka), Dr. H. S. Park (RIKEN), Dr. T. Matsuda (JST), Dr. E. Okunishi, and Mr. A. Yasuhara (JEOL) for very helpful discussions regarding the topics presented in this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasukazu Murakami .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Murakami, Y. (2014). High Resolution Imaging Techniques for Understanding of Mesoscopic Phenomena. In: Saxena, A., Planes, A. (eds) Mesoscopic Phenomena in Multifunctional Materials. Springer Series in Materials Science, vol 198. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55375-2_5

Download citation

Publish with us

Policies and ethics