Skip to main content

Strain Glass as a Novel Multi-functional Material

  • Chapter
  • First Online:
Mesoscopic Phenomena in Multifunctional Materials

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 198))

Abstract

Strain glass is a frozen disordered state of local lattice strains (nano-martensite domains), which is the third state of the martensitic/ferroelastic system in addition to parent phase and martensite. In this chapter, the key features of strain glass and its multi-functional properties are reviewed. It is shown that strain glass exhibits a number of interesting properties like shape memory effect, superelasticity with narrow hysteresis, tunable damping, together with unusual properties like Invar effect, Elinvar effect as discovered in β-Ti strain glass alloys. All these multi-functional properties stem from the response of the nano-domains of strain glass to temperature change and external stress. With the recent finding of ferromagnetic strain glass, novel magneto-elastic functionalities may be anticipated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K. Otsuka, C.M. Wayman, Shape Memory Materials (Cambridge University Press, Cambridge, 1998)

    Google Scholar 

  2. K. Otsuka, X. Ren, Physical metallurgy of Ti-Ni-based shape memory alloys. Prog. Mater Sci. 50, 511 (2005)

    Article  Google Scholar 

  3. S. Sarkar, X. Ren, K. Otsuka, Evidence for strain glass in the ferroelastic-martensitic system Ti50-xNi50+x. Phys. Rev. Lett. 95, 205702 (2005)

    Article  Google Scholar 

  4. Y. Wang, X. Ren, K. Otsuka, A. Saxena, Evidence for broken ergodicity in strain glass. Phys. Rev. B. 76, 132201 (2007)

    Article  Google Scholar 

  5. X. Ren, Y. Wang, Y. Zhou, Z. Zhang, D. Wang, G. Fan, K. Otsuka, T. Suzuki, Y. Ji, J. Zhang, Y. Tian, S. Hou, X. Ding, Strain glass in ferroelastic systems: premartensitic tweed versus strain glass. Philos. Mag. 90, 141 (2010)

    Article  Google Scholar 

  6. X. Ren, Y. Wang, K. Otsuka, P. Lloveras, T. Castan, M. Porta, A. Planes, A. Saxena, Ferroelastic nanostructures and nanoscale transitions: ferroics with point defects. MRS Bull. 34, 838 (2009)

    Article  Google Scholar 

  7. Y. Wang, X. Ren, K. Otsuka, Strain glass: glassy martensite. Mater. Sci. Forum 583, 67 (2008)

    Article  Google Scholar 

  8. Y. Wang, X. Ren, K. Otsuka, Shape memory effect and superelasticity in a strain glass alloy. Phys. Rev. Lett. 97, 225703 (2006)

    Article  Google Scholar 

  9. Y. Wang, X. Ren, K. Otsuka, A. Saxena, Temperature-stress phase diagram of strain glass Ti48.5Ni51.5. Acta Mater. 56, 2885 (2008)

    Article  Google Scholar 

  10. D.P. Wang, X. Chen, Z.H. Nie, N. Li, Z.L. Wang, Y. Ren, Y.D. Wang, Transition in superelasticity for Ni55−xCoxFe18Ga27 alloys due to strain glass transition. EPL 98, 46004 (2012)

    Article  Google Scholar 

  11. D. Wang, S. Hou, Y. Wang, X. Ding, S. Ren, X. Ren, Y. Wang, Superelasticity of slim hysteresis over a wide temperature range by nanodomains of martensite. Acta Mater. 66, 349 (2014)

    Google Scholar 

  12. Y. Nii, T. Arima, H.Y. Kim, S. Miyazaki, Effect of randomness on ferroelastic transitions: disorder-induced hysteresis loop rounding in Ti-Nb-O martensitic alloy. Phys. Rev. B 82, 214104 (2010)

    Article  Google Scholar 

  13. Y. Zhou, D. Xue, X. Ding, K. Otsuka, J. Sun, X. Ren, High temperature strain glass in Ti50(Pd50−xCrx) alloy and the associated shape memory effect and superelasticity. Appl. Phys. Lett. 95, 151906 (2009)

    Article  Google Scholar 

  14. Y. Wang, X. Song, X. Ding, S. Yang, J. Zhang, X. Ren, K. Otsuka, Stress changed damping and associated transforming behavior in a Ti48.5Ni51.5 strain glass. Appl. Phys. Lett. 99, 051905 (2011)

    Article  Google Scholar 

  15. Y. Wang, J. Gao, H. Wu, S. Yang, X. Ding, D. Wang, X. Ren, Y.Z. Wang, X. Song, J. Gao, Strain glass transition in a multifunctional β-type Ti alloy. Sci. Rep. 4, 3995 (2014)

    Google Scholar 

  16. S. Kartha, T. Castan, J.A. Krumhansl, J.P. Sethna, Spin-glass nature of tweed precursors in martensitic transformations. Phys. Rev. Lett. 67, 3630 (1991)

    Article  Google Scholar 

  17. S. Kartha, J.A. Krumhansl, J.P. Sethna, L.K. Wickham, Disorder-driven pretransitional tweed pattern in martensitic transformations. Phys. Rev. B 52, 803 (1995)

    Article  Google Scholar 

  18. S. Semenovskaya, A.G. Khachaturyan, Coherent structural transformations in random crystalline systems. Acta Mater. 45, 4367 (1997)

    Article  Google Scholar 

  19. D. Wang, Y.Z. Wang, Z. Zhang, X. Ren, Modeling abnormal strain states in ferroelastic systems: the role of point defects. Phys. Rev. Lett. 105, 205702 (2010)

    Article  Google Scholar 

  20. P. Lloveras, T. Castán, M. Porta, A. Planes, A. Saxena, Influence of elastic anisotropy on structural nanoscale textures. Phys. Rev. Lett. 100, 165707 (2008)

    Article  Google Scholar 

  21. Y. Wang, Y. Zhou, J. Zhang, X. Ding, S. Yang, X. Song, X. Ren, K. Otsuka, Evolution of the relaxation spectrum during the strain glass transition of Ti48.5Ni51.5 alloy. Acta Mater. 58, 4723 (2010)

    Article  Google Scholar 

  22. Z. Zhang, Y. Wang, D. Wang, Y. Zhou, K. Otsuka, X. Ren, Phase diagram of Ti50-xNi50+x: crossover from martensite to strain glass. Phys. Rev. B 81, 22402 (2010)

    Google Scholar 

  23. D. Wang, Z. Zhang, J. Zhang, Y. Zhou, Y. Wang, X. Ding, Y.Z. Wang, X. Ren, Strain glass in Fe-doped Ti-Ni. Acta Mater. 58, 6206 (2010)

    Article  Google Scholar 

  24. Y. Zhou, D. Xue, X. Ding, Y. Wang, J. Zhang, Z. Zhang, D. Wang, K. Otsuka, J. Sun, X. Ren, Strain glass in doped Ti50(Ni50-xDx) (D = Co, Cr, Mn) alloys–Implication for the generality of strain glass in defect-containing ferroelastic systems. Acta Mater. 58, 5433 (2010)

    Article  Google Scholar 

  25. Y. Wang, C. Huang, J. Gao, S. Yang, X. Ding, X.P. Song, X. Ren, Evidence for ferromagnetic strain glass in Ni-Co-Mn-Ga Heusler alloy system. Appl. Phys. Lett. 101, 101913 (2012)

    Article  Google Scholar 

  26. Y. Wang, C. Huang, H. Wu, J. Gao, S. Yang, D. Wang, X. Ding, X. Song, X. Ren, Spontaneous strain glass to martensite transition in ferromagnetic Ni-Co-Mn-Ga strain glass. Appl. Phys. Lett. 102, 141909 (2013)

    Article  Google Scholar 

  27. Y.C. Ji, X.D. Ding, T. Lookman, K. Otsuka, X.B. Ren, Heterogeneities and strain glass behavior: role of nanoscale precipitates in low-temperature-aged Ti48.7Ni51.3 alloys. Phys. Rev. B 87, 104110 (2013)

    Google Scholar 

  28. Q. Tan, J.F. Li, D. Viehland, Role of potassium commodification on domain evolution and electrically induced strains in La modified lead zirconate titanate ferroelectric ceramics. J. Appl. Phys. 88, 3433 (2000)

    Article  Google Scholar 

  29. S. Karmakar, S. Taran, B.K. Chaudhuri, H. Sakata, C.P. Sun, C.L. Huang, H.D. Yang, Disorder-induced short-range ferromagnetism and cluster spin-glass state in sol-gel derived La0.7Ca0.3Mn1−xCdxO3(0 ≤ x≤0.2). Phys. Rev. B 74, 104407 (2006)

    Article  Google Scholar 

  30. D. Viehland, J.F. Li, S.J. Jang, L.E. Cross, M. Wuttig, Glassy polarization behavior of relaxor ferroelectrics. Phys. Rev. B 46, 8013 (1992)

    Article  Google Scholar 

  31. N. Gayathri, A.K. Raychaudhuri, S.K. Tiwary, R. Gundakaram, A. Arulraj, C.N.R. Rao, Electrical transport, magnetism, and magnetoresistance in ferromagnetic oxides with mixed exchange interactions: a study of the La0.7Ca0.3Mn1-xCoxO3 system. Phys. Rev. B 56, 1345 (1997)

    Article  Google Scholar 

  32. Y. Zhou, D. Xue, Y. Tian, X. Ding, S. Guo, K. Otsuka, J. Sun, X. Ren, Direct evidence for local symmetry breaking during a strain glass transition. Phys. Rev. Lett. 112, 025701 (2014)

    Google Scholar 

  33. J. Zhang, Y. Wang, X.D. Ding, Z. Zhang, Y.M. Zhou, X. Ren, K. Otsuka, J. Sun, M.H. Song, Stress-induced strain glass to martensite (R) transition in a Ti50Ni44.5Fe5.5 alloy. Phys. Rev. B 83, 174204 (2011)

    Article  Google Scholar 

  34. J.L. Snoek, Effect of small quantities of carbon and nitrogen on the elastic and plastic properties of iron. Physica 8, 711 (1971)

    Article  Google Scholar 

  35. C. Zener, Stress induced preferential orientation of pairs of solute atoms in metallic solid solution. Phys. Rev. 71, 34 (1947)

    Article  Google Scholar 

  36. R. De Batist, Internal Friction of Structrual Defects in Crystalline Solids (North-Holland Publishing Company, Amsterdam, 1972)

    Google Scholar 

  37. R. Schaller, G. Fantozzi, G. Gremaud (eds.), Mechanical Spectroscopy Q −1 2001 (Trans Tech Publications LTD, Zurich, 2001)

    Google Scholar 

  38. T. Saito, T. Furuta, J.H. Hwang, S. Kuramoto, K. Nishino, N. Suzuki, R. Chen, A. Yamada, K. Ito, Y. Seno, T. Nonaka, H. Ikehata, N. Nagasako, C. Iwamoto, Y. Ikuhara, T. Sakuma, Multifunctional alloys obtained via a dislocation-free plastic deformation mechanism. Science 300, 464 (2003)

    Article  Google Scholar 

  39. R. Kainuma, J.J. Wang, T. Omori, Y. Sutou, K. Ishida, Invar-type effect induced by cold-rolling deformation in shape memory alloys. Appl. Phys. Lett. 80, 4348 (2002)

    Article  Google Scholar 

  40. H. Matsumoto, S. Watanabe, S. Hanada, Beta TiNbSn alloys with low Young’s modulus and high strength. Mater. Trans. 46, 1070 (2005)

    Article  Google Scholar 

  41. H.I. Kwon, I.S. Kim, A positron annihilation study of defects in extra high purity Ti with various deformation and annealing treatments. Scripta Metall. Mater. 32, 607 (1995)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank A. Saxena, T. Lookman, D. Sherrington, Y. Z. Wang and K. Otsuka for stimulating discussions. Y. Wang acknowledges the financial support by National Natural Science Foundation of China (Grant No. 51101118), National Basic Research Program of China (Grant No. 2012CB619401), and Program for New Century Excellent Talents (No. NCET-12-0458).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu Wang or Xiaobing Ren .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wang, Y., Wang, D., Zhou, Y., Zhang, J., Xue, D., Ren, X. (2014). Strain Glass as a Novel Multi-functional Material. In: Saxena, A., Planes, A. (eds) Mesoscopic Phenomena in Multifunctional Materials. Springer Series in Materials Science, vol 198. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55375-2_11

Download citation

Publish with us

Policies and ethics