Skip to main content

Burchnall-Chaundy Theory for Ore Extensions

  • Conference paper
  • First Online:
Algebra, Geometry and Mathematical Physics

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 85))

Abstract

We begin by reviewing a classical result on the algebraic dependence of commuting elements in the Weyl algebra. We proceed by describing generalizations of this result to various classes of Ore extensions, including both results that are already known and one new result.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amitsur, S.A.: Commutative linear differential operators. Pacific J. Math. 8, 1–10 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  2. Burchnall, J.L., Chaundy, T.W.: Commutative ordinary differential operators. Proc. London Math. Soc. 3(21), 420–440 (1923)

    Article  MathSciNet  Google Scholar 

  3. Burchnall, J.L., Chaundy, T.W.: Commutative ordinary differential operators. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 118, 557–583 (1928)

    Article  MATH  Google Scholar 

  4. Burchnall, J.L., Chaundy, T.W.: Commutative ordinary differential operators ii, the identity \(p^n = q^m\). Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 134, 471–485 (1931)

    Article  Google Scholar 

  5. Carlson, R.C., Goodearl, K.R.: Commutants of ordinary differential operators. J. Diff. Equat. 35, 339–365 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  6. de Jeu, M., Svensson, C., Silvestrov, S.: Algebraic curves for commuting elements in the \(q\)-deformed heisenberg algebra. J. Algebra 321, 1239–1255 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Flanders, H.: Commutative linear differential operators. Technical report 1, University of California, Berkely (1955)

    Google Scholar 

  8. Goodearl, K.R.: Centralizers in differential, pseudodifferential, and fractional differential operator rings. Rock. Mt. J. Math. 13, 573–618 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  9. Goodearl, K.R., Warfield, R.B.: An introduction to noncommutative Noetherian rings, 2nd edn. London Mathematical Society Student Texts, vol. 61. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  10. Hellström, L., Silvestrov, S.: Commuting Elements in \(q\)-deformed Heisenberg Algebras. World Scientific, Singapore (2000)

    Book  Google Scholar 

  11. Hellström, L., Silvestrov, S.: Ergodipotent maps and commutativity of elements in noncommutative rings and algebras with twisted intertwining. J. Algebra 314, 17–41 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Larsson, D., Silvestrov, S.: Burchnall-Chaundy theory for \(q\)-difference operators and \(q\)-deformed Heisenberg algebras. J. Nonlin. Math. Phys. 10, 95–106 (2003)

    Google Scholar 

  13. Mazorchuk, V.: A note on centralizers in \(q\)-deformed Heisenberg algebras. AMA Algebra Montpellier announcements paper 2, 6 pp. (2001)

    Google Scholar 

  14. Rowen, L.H.: Ring Theory, vol. I. Pure and Applied Mathematics, vol. 127. Academic Press Inc., Boston (1988)

    Google Scholar 

  15. Richter, J., Silvestrov, S.: Burchnall-Chaundy annihilating polynomials for commuting elements in Ore extension rings. In: Abramov, V. et al. (eds.) Algebra, Geometry, and Mathematical Physics 2010, vol. 346. IOP Publishing, Bristol. J. Phys. Conf. Ser. (2012)

    Google Scholar 

Download references

Acknowledgments

The author wishes to thank Fredrik Ekström, Johan Öinert and Sergei Silvestrov for helpful comments. The author is also grateful to the Dalhgren and Lanner foundations for support. This research was also supported in part by the Swedish Foundation for International Cooperation in Research and Higher Education (STINT), The Swedish Research Council (grant no. 2007-6338), The Royal Swedish Academy of Sciences, The Crafoord Foundation and the NordForsk Research Network “Operator Algebras and Dynamics” (grant no. 11580).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johan Richter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Richter, J. (2014). Burchnall-Chaundy Theory for Ore Extensions. In: Makhlouf, A., Paal, E., Silvestrov, S., Stolin, A. (eds) Algebra, Geometry and Mathematical Physics. Springer Proceedings in Mathematics & Statistics, vol 85. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55361-5_4

Download citation

Publish with us

Policies and ethics