Skip to main content

Realizations of Affine Lie Algebra \({A^{(1)}_1}\) at Negative Levels

  • Conference paper
  • First Online:
Algebra, Geometry and Mathematical Physics

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 85))

Abstract

A realization of the affine Lie algebra \({A^{(1)}_1}\) and the relevant \(Z\)-algebra at negative level \(-k\) is given in terms of parafermions. This generalizes the recent work on realization of the affine Lie algebra at the critical level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adamovi\(\acute{c}\), A.: Lie superalgebras and irreducibility of \({A^{(1)}_1}\)-modules at the critical level. Commun. Math. Phys. 270, 141–161 (2000)

    Google Scholar 

  2. Ding, X.M., Fan, H., Shi, K.J.: \(W_3\)-algebra constructed from the \(SU(3)\) parafermion. Nucl. Phys. B 422, 307–328 (1994)

    Google Scholar 

  3. Ding, X.M., Gould, M.D., Zhang, Y.Z.: Twisted parafermions. Phys. Lett. B 530, 197–201 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ding, X.M., Gould, M.D., Zhang, Y.Z.: \({a^{(2)}_2}\) parafermions: a new conformal field. Nucl. Phys. B 636, 549–567 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dong, C.Y., Lepowsky, J.: Generalized vertex algebras and relative vertex operators. Prog. Math, 112 (1993) (Birkhäuser, Boston )

    Google Scholar 

  6. Dong, C.Y., Wang, Q.: Parafermion vertex operator algebras. Front. Math. China 6(4), 567–579 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dunbar, J., Jing, N., Misra, K.: Realization of \({\widehat{sl}}_2(\mathbb{C})\) at the critical level and the \(Z\)-algebra. Commun. Contemp. Math. 16(2), 145006–145019 (2014)

    Google Scholar 

  8. Feigin, B.L., Frenkel, E.V.: Representations of affine Kac-Moody algebras and Bosonization. In: Brink, L., Freidan, D., Polyakov, A.M. (eds.) Physics and Mathematics of Strings, pp. 271–316. World Scientific, Singapore (1990)

    Google Scholar 

  9. Feingold, A., Frenkel, I.B.: Classical affine lie algebras. Adv. Math. 56, 117–172 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  10. Frenkel, I.B.: Spinor representations of affine lie algebras. Proc. Nat. Acad. Sci. U.S.A. 77, 6303–6306 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  11. Frenkel, I.B., Lepowsky, J., Meurman, A.: Vertex operator algebras and the monster. Pure Appl. Math. 134, (1988) (Academic Press, Boston)

    Google Scholar 

  12. Frenkel, I.B., Kac, V.G.: Basic representations of affine lie algebras and dual resonance models. Invent. Math. 62, 23–66 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gepner, D.: New conformal filed theories associated with lie algebras and their partions functions. Nucl. Phys. B 290, 10–24 (1987)

    Article  MathSciNet  Google Scholar 

  14. Jing, N.: Higher level representations of the quantum affine algebra \(u_q({\widehat{sl}}_2(\mathbb{C}))\). J. Alg. 182, 448–468 (1996)

    Article  MATH  Google Scholar 

  15. Kac, V.G., Kazhdan, D., Lepowsky, J., Wilson, R.L.: Realization of the basic representation of the euclidean lie algebras. Adv. Math. 42, 83–112 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kac, V.G., Peterson, D.: Spin and wedge representations of infinite-dimensional lie algebras and groups. Proc. Nat’l. Acad. Sci. U.S.A. 78, 3308–3312 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  17. ten Kroode, F., van de Leur, J.: Level one representations of the affine algebra \(b^{(1)}_n\). Acta Appl. Math. 31, 1–73 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lepowsky, J., Wilson, R.L.: Construction of the affine lie algebra \({a^{(1)}_1}\). Commun. Math. Phys. 62, 43–53 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  19. Segal, G.: Unitary representations of some infinite dimensional groups. Commun. Math. Phys. 80, 301–342 (1981)

    Article  MATH  Google Scholar 

  20. Wakimoto, M.: Fock representations of the affine lie algebra \({a^{(1)}_1}\). Commun. Math. Phys. 104, 605–609 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wang, P., Zhu, C.Y.: \(Z\)-algebra construction of \(W\)-algebra in the parafermion model. Commun. Theor. Phys. 21, 471–478 (1994)

    Google Scholar 

  22. Zamolodchikov, A.B., Fateev, V.A. : Nonlocal (parafermion) currents in two-dimensional conformal quantum field theory and self-dual critical points in \(Z_N\)-symmetric statistical systems. Sovet Phys. JETP 62, 215–225 (1985)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naihuan Jing .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dong, J., Jing, N. (2014). Realizations of Affine Lie Algebra \({A^{(1)}_1}\) at Negative Levels. In: Makhlouf, A., Paal, E., Silvestrov, S., Stolin, A. (eds) Algebra, Geometry and Mathematical Physics. Springer Proceedings in Mathematics & Statistics, vol 85. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55361-5_36

Download citation

Publish with us

Policies and ethics