Skip to main content

Sound Propagation in Rib-Stiffened Sandwich Structures with Cavity Absorption

  • Chapter
  • First Online:
Vibro-Acoustics of Lightweight Sandwich Structures

Part of the book series: Springer Tracts in Mechanical Engineering ((STME))

  • 1515 Accesses

Abstract

This chapter is organized as two parts: in the first part, a comprehensive theoretical model is developed for the radiation of sound from an infinite orthogonally rib-stiffened sandwich structure filled with fibrous sound absorptive material in the partitioned cavity, when excited by a time-harmonic point force. The vibrations of the rib-stiffeners are accounted for by considering all possible motions. Built upon the concepts of dynamic density and bulk modulus, both frequency dependent, an equivalent fluid model is employed to characterize the absorption of sound in the fibrous material. Given the periodicity of the sandwich structure, Fourier transform technique is employed to solve the series of panel vibration equations and acoustic equations. In the absence of fibrous sound absorptive material, the model can be favorably degraded to the case of an infinite rib-stiffened structure with air or vacuum cavity. Validation of the model is performed by comparing the present model predictions with previously published data, with excellent agreements achieved. The influences of air-structure coupling effect and cavity-filling fibrous material on the sound radiation are systematically examined. The physical features associated with sound penetration across these sandwich structures are interpreted by considering the combined effects of fiberglass stiffness and damping, the balance of which is significantly affected by stiffener separation. The proposed model provides a convenient and efficient tool for the factual engineering design of this kind of sandwich structures.

In the second part, the transmission loss of sound through infinite orthogonally rib-stiffened double-panel structures having cavity-filling fibrous sound absorptive materials is theoretically investigated. The propagation of sound across the fibrous material is characterized using an equivalent fluid model, and the motions of the rib-stiffeners are described by including all possible vibrations, i.e., tensional displacements, bending, and torsional rotations. The effects of fluid-structure coupling are accounted for by enforcing velocity continuity conditions at fluid-panel interfaces. By fully taking advantage of the periodic nature of the double panel, the space-harmonic approach and virtual work principle are applied to solve the sets of resultant governing equations, which are eventually truncated as a finite system of simultaneous algebraic equations and numerically solved insofar as the solution converges. To validate the proposed model, a comparison between the present model predictions and existing numerical and experimental results for a simplified version of the double-panel structure is carried out, with overall agreement achieved. The model is subsequently employed to explore the influence of the fluid-structure coupling between fluid in the cavity and the two panels on sound transmission across the orthogonally rib-stiffened double-panel structure. Obtained results demonstrate that this fluid-structure coupling affects significantly sound transmission loss (STL) at low frequencies and cannot be ignored when the rib-stiffeners are sparsely distributed. As a highlight of this research, an integrated optimal algorithm toward lightweight, high-stiffness, and superior sound insulation capability is proposed, based on which a preliminary optimal design of the double-panel structure is performed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Xin FX, Lu TJ, Chen CQ (2010) Sound transmission through simply supported finite double-panel partitions with enclosed air cavity. J Vib Acoust 132(1):011008:011001–011011

    Google Scholar 

  2. Mace BR (1980) Sound radiation from a plate reinforced by two sets of parallel stiffeners. J Sound Vib 71(3):435–441

    Article  MATH  Google Scholar 

  3. Mace BR (1981) Sound radiation from fluid loaded orthogonally stiffened plates. J Sound Vib 79(3):439–452

    Article  MATH  Google Scholar 

  4. Yin XW, Gu XJ, Cui HF et al (2007) Acoustic radiation from a laminated composite plate reinforced by doubly periodic parallel stiffeners. J Sound Vib 306(3–5):877–889

    Article  Google Scholar 

  5. Xin FX, Lu TJ, Chen CQ (2009) Dynamic response and acoustic radiation of double-leaf metallic panel partition under sound excitation. Comput Mater Sci 46(3):728–732

    Article  Google Scholar 

  6. Maury C, Gardonio P, Elliott SJ (2001) Active control of the flow-induced noise transmitted through a panel. AIAA J 39(10):1860–1867

    Article  Google Scholar 

  7. Xin FX, Lu TJ, Chen CQ (2009) External mean flow influence on noise transmission through double-leaf aeroelastic plates. AIAA J 47(8):1939–1951

    Article  Google Scholar 

  8. Xin FX, Lu TJ (2009) Analytical and experimental investigation on transmission loss of clamped double panels: implication of boundary effects. J Acoust Soc Am 125(3): 1506–1517

    Article  Google Scholar 

  9. Xin FX, Lu TJ, Chen CQ (2008) Vibroacoustic behavior of clamp mounted double-panel partition with enclosure air cavity. J Acoust Soc Am 124(6):3604–3612

    Article  Google Scholar 

  10. Lin G-F, Garrelick JM (1977) Sound transmission through periodically framed parallel plates. J Acoust Soc Am 61(4):1014–1018

    Article  Google Scholar 

  11. Takahashi D (1983) Sound radiation from periodically connected double-plate structures. J Sound Vib 90(4):541–557

    Article  MATH  Google Scholar 

  12. Trochidis A, Kalaroutis A (1986) Sound transmission through double partitions with cavity absorption. J Sound Vib 107(2):321–327

    Article  MATH  Google Scholar 

  13. Alba J, Ramis J, Sanchez-Morcillo VJ (2004) Improvement of the prediction of transmission loss of double partitions with cavity absorption by minimization techniques. J Sound Vib 273(4–5):793–804

    Article  Google Scholar 

  14. Mead DJ, Pujara KK (1971) Space-harmonic analysis of periodically supported beams: response to convected random loading. J Sound Vib 14(4):525–532

    Article  Google Scholar 

  15. Lee JH, Kim J (2002) Analysis of sound transmission through periodically stiffened panels by space-harmonic expansion method. J Sound Vib 251(2):349–366

    Article  Google Scholar 

  16. Wang J, Lu TJ, Woodhouse J et al (2005) Sound transmission through lightweight double-leaf partitions: theoretical modelling. J Sound Vib 286(4–5):817–847

    Article  Google Scholar 

  17. Legault J, Atalla N (2009) Numerical and experimental investigation of the effect of structural links on the sound transmission of a lightweight double panel structure. J Sound Vib 324(3–5):712–732

    Article  Google Scholar 

  18. Xin FX, Lu TJ (2010) Analytical modeling of fluid loaded orthogonally rib-stiffened sandwich structures: sound transmission. J Mech Phys Solids 58(9):1374–1396

    Article  MATH  MathSciNet  Google Scholar 

  19. Panneton R, Atalla N (1996) Numerical prediction of sound transmission through finite multilayer systems with poroelastic materials. J Acoust Soc Am 100(1):346–354

    Article  Google Scholar 

  20. Sgard FC, Atalla N, Nicolas J (2000) A numerical model for the low frequency diffuse field sound transmission loss of double-wall sound barriers with elastic porous linings. J Acoust Soc Am 108(6):2865–2872

    Article  Google Scholar 

  21. Brown SM, Niedzielski J, Spalding GR (1978) Effect of sound-absorptive facings on partition airborne-sound transmission loss. J Acoust Soc Am 63(6):1851–1856

    Article  Google Scholar 

  22. Allard J-F, Champoux Y (1992) New empirical equations for sound propagation in rigid frame fibrous materials. J Acoust Soc Am 91(6):3346–3353

    Article  Google Scholar 

  23. Rumerman ML (1975) Vibration and wave propagation in ribbed plates. J Acoust Soc Am 57(2):370–373

    Article  MATH  MathSciNet  Google Scholar 

  24. Lu TJ, Hess A, Ashby MF (1999) Sound absorption in metallic foams. J Appl Phys 85(11):7528–7539

    Article  Google Scholar 

  25. Wang XL, Lu TJ (1999) Optimized acoustic properties of cellular solids. J Acoust Soc Am 106(2):756–765

    Article  Google Scholar 

  26. Lu TJ, Chen F, He D (2000) Sound absorption of cellular metals with semiopen cells. J Acoust Soc Am 108(4):1697–1709

    Article  Google Scholar 

  27. Lu TJ, Kepets M, Dowling A (2008) Acoustic properties of sintered FeCrAlY foams with open cells (I): static flow resistance. Sci China Series E Technol Sci 51(11):1803–1811

    Article  MATH  Google Scholar 

  28. Lu TJ, Kepets M, Dowling A (2008) Acoustic properties of sintered FeCrAlY foams with open cells (II): sound attenuation. Sci China Series E Technol Sci 51(11):1812–1837

    Article  MATH  Google Scholar 

  29. Zwikker C, Kosten CW (1949) Sound absorbing materials. Elsevier, New York

    Google Scholar 

  30. Morse PM, Ingard KU (1968) Theoretical acoustics. McGraw-Hill, New York

    Google Scholar 

  31. Biot MA (1956) Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency range. J Acoust Soc Am 28(2):168–178

    Article  MathSciNet  Google Scholar 

  32. Biot MA (1956) Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range. J Acoust Soc Am 28(2):179–191

    Article  MathSciNet  Google Scholar 

  33. Johnson DL, Koplik J, Dashen R (1987) Theory of dynamic permeability and tortuosity in fluid-saturated porous-media. J Fluid Mech 176:379–402

    Article  MATH  Google Scholar 

  34. Xin FX, Lu TJ (2010) Analytical modeling of sound transmission across finite aeroelastic panels in convected fluids. J Acoust Soc Am 128(3):1097–1107

    Article  Google Scholar 

  35. Mace BR (1980) Periodically stiffened fluid-loaded plates, I: Response to convected harmonic pressure and free wave propagation. J Sound Vib 73(4):473–486

    Article  MATH  Google Scholar 

  36. Legault J, Atalla N (2010) Sound transmission through a double panel structure periodically coupled with vibration insulators. J Sound Vib 329(15):3082–3100

    Article  Google Scholar 

  37. Mead DJ (1970) Free wave propagation in periodically supported, infinite beams. J Sound Vib 11(2):181–197

    Article  Google Scholar 

  38. Xin FX, Lu TJ (2010) Sound radiation of orthogonally rib-stiffened sandwich structures with cavity absorption. Compos Sci Technol 70(15):2198–2206

    Article  Google Scholar 

  39. Delany ME, Bazley EN (1970) Acoustical properties of fibrous absorbent materials. Appl Acoust 3(2):105–116

    Article  Google Scholar 

  40. Brillouin L (1953) Wave propagation in periodic structures. Dover, New York

    MATH  Google Scholar 

  41. Graham WR (1995) High-frequency vibration and acoustic radiation of fluid-loaded plates. Philos Trans R Soc Phys Eng Sci (1990–1995) 352(1698):1–43

    Article  MATH  Google Scholar 

  42. Kolsters H, Wennhage P (2009) Optimisation of laser-welded sandwich panels with multiple design constraints. Mar Struct 22(2):154–171

    Article  Google Scholar 

  43. Lok TS, Cheng QH (1999) Elastic deflection of thin-walled sandwich panel. J Sandw Struct Mater 1(4):279–298

    Article  Google Scholar 

  44. Xin FX, Lu TJ (2010) Effects of core topology on sound insulation performance of lightweight all-metallic sandwich panels. Mat Manuf Process 26(9):1213–1221

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendices

Appendices

6.1.1 Appendix A

Taking into account the inertial effects (due to stiffener mass) and applying both Hooke’s law and Newton’s second law, one can express the tensional forces arising from the rib-stiffeners as [18]

$$ {Q}_x^{+}=-{R}_{Q1}{w}_1+{R}_{Q2}{w}_2,\kern1em {Q}_x^{-}=-{R}_{Q2}{w}_1+{R}_{Q1}{w}_2 $$
(6.A.1)
$$ {Q}_y^{+}=-{R}_{Q3}{w}_1+{R}_{Q4}{w}_2,\kern1em {Q}_y^{-}=-{R}_{Q4}{w}_1+{R}_{Q3}{w}_2 $$
(6.A.2)
$$ {R}_{Q1}=\frac{K_x\left({K}_x-{m}_x{\omega}^2\right)}{\left(2{K}_x-{m}_x{\omega}^2\right)},\kern1em {R}_{Q2}=\frac{K_x^2}{\left(2{K}_x-{m}_x{\omega}^2\right)} $$
(6.A.3)
$$ {R}_{Q3}=\frac{K_y\left({K}_y-{m}_y{\omega}^2\right)}{\left(2{K}_y-{m}_y{\omega}^2\right)},\kern1em {R}_{Q4}=\frac{K_y^2}{\left(2{K}_y-{m}_y{\omega}^2\right)} $$
(6.A.4)

where ω is the circle frequency and (K x , K y ) are the tensional stiffness of half the rib-stiffeners per unit length.

Likewise, the bending moments of the rib-stiffeners can be expressed as [18]

$$ {M}_x^{+}={R}_{M1}\frac{\partial^2{w}_1}{\partial {x}^2}-{R}_{M2}\frac{\partial^2{w}_2}{\partial {x}^2},\kern1em {M}_x^{-}={R}_{M2}\frac{\partial^2{w}_1}{\partial {x}^2}-{R}_{M1}\frac{\partial^2{w}_2}{\partial {x}^2} $$
(6.A.5)
$$ {M}_y^{+}={R}_{M3}\frac{\partial^2{w}_1}{\partial {y}^2}-{R}_{M4}\frac{\partial^2{w}_2}{\partial {y}^2},\kern1em {M}_y^{-}={R}_{M4}\frac{\partial^2{w}_1}{\partial {y}^2}-{R}_{M3}\frac{\partial^2{w}_2}{\partial {y}^2} $$
(6.A.6)
$$ {R}_{M1}=\frac{E_x{I}_x^{*}\left({E}_x{I}_x^{*}-{\rho}_x{I}_x{\omega}^2\right)}{\left(2{E}_x{I}_x^{*}-{\rho}_x{I}_x{\omega}^2\right)},\kern1em {R}_{M2}=\frac{E_x^2{I_x^{*}}^2}{\left(2{E}_x{I}_x^{*}-{\rho}_x{I}_x{\omega}^2\right)} $$
(6.A.7)
$$ {R}_{M3}=\frac{E_y{I}_y^{*}\left({E}_y{I}_y^{*}-{\rho}_y{I}_y{\omega}^2\right)}{\left(2{E}_y{I}_y^{*}-{\rho}_y{I}_y{\omega}^2\right)},\kern1em {R}_{M4}=\frac{E_y^2{I_y^{*}}^2}{\left(2{E}_y{I}_y^{*}-{\rho}_y{I}_y{\omega}^2\right)} $$
(6.A.8)

where (E x I * x , E y I * y ) are the bending stiffness of half the rib-stiffeners and (ρ x , ρ y ) and (I x , I y ) are mass density and polar moment of inertia for the rib-stiffeners, with subscripts x and y indicating the direction of the stiffeners.

In a similar manner, the torsional moments of the rib-stiffeners are obtained as [18]

$$ {M}_{T x}^{+}={R}_{T1}\frac{\partial^2{w}_1}{\partial x\partial y}-{R}_{T2}\frac{\partial^2{w}_2}{\partial x\partial y},\kern1em {M}_{T x}^{-}={R}_{T2}\frac{\partial^2{w}_1}{\partial x\partial y}-{R}_{T1}\frac{\partial^2{w}_2}{\partial x\partial y} $$
(6.A.9)
$$ {M}_{T y}^{+}={R}_{T3}\frac{\partial^2{w}_1}{\partial y\partial x}-{R}_{T4}\frac{\partial^2{w}_2}{\partial y\partial x},\kern1em {M}_{T y}^{-}={R}_{T4}\frac{\partial^2{w}_1}{\partial y\partial x}-{R}_{T3}\frac{\partial^2{w}_2}{\partial y\partial x} $$
(6.A.10)
$$ {R}_{T1}=\frac{G_x{J}_x^{*}\left({G}_x{J}_x^{*}-{\rho}_x{J}_x{\omega}^2\right)}{\left(2{G}_x{J}_x^{*}-{\rho}_x{J}_x{\omega}^2\right)},\kern1em {R}_{T2}=\frac{G_x^2{J_x^{*}}^2}{\left(2{G}_x{J}_x^{*}-{\rho}_x{J}_x{\omega}^2\right)} $$
(6.A.11)
$$ {R}_{T3}=\frac{G_y{J}_y^{*}\left({G}_y{J}_y^{*}-{\rho}_y{J}_y{\omega}^2\right)}{\left(2{G}_y{J}_y^{*}-{\rho}_y{J}_y{\omega}^2\right)},\kern1em {R}_{T4}=\frac{G_y^2{J_y^{*}}^2}{\left(2{G}_y{J}_y^{*}-{\rho}_y{J}_y{\omega}^2\right)} $$
(6.A.12)

where (G x J * x , G y J * y ) are the torsional stiffness of half the rib-stiffeners and (J x , J y ) are the torsional moment of inertia for the rib-stiffeners.

The Fourier transforms of the tensional forces, bending moments, and torsional moments are listed below:

  1. 1.

    Fourier transforms of tensional forces

    $$ {\tilde{Q}}_x^{+}={R}_{Q2}{\tilde{w}}_2\left( a,{\beta}_n\right)-{R}_{Q1}{\tilde{w}}_1\left( a,{\beta}_n\right),\kern0.6em {\tilde{Q}}_x^{-}={R}_{Q1}{\tilde{w}}_2\left( a,{\beta}_n\right)-{R}_{Q2}{\tilde{w}}_1\left( a,{\beta}_n\!\right) $$
    (6.A.13)
    $$ {\tilde{Q}}_y^{+}{=}{R}_{Q4}{\tilde{w}}_2\left({a}_m,\beta \right){-}{R}_{Q3}{\tilde{w}}_1\left({a}_m,\beta \right),\kern.5em {\tilde{Q}}_y^{-}={R}_{Q3}{\tilde{w}}_2\left({a}_m,\beta \right){-}{R}_{Q4}{\tilde{w}}_1\left({a}_m,\beta \right) $$
    (6.A.14)
  2. 2.

    Fourier transforms of bending moments

    $$ \begin{array} {llll} {\tilde{M}}_x^{+}&={\alpha}^2\left[{R}_{M2}{\tilde{w}}_2\left( a,{\beta}_n\right)-{R}_{M1}{\tilde{w}}_1\left( a,{\beta}_n\right)\right],\\ {\tilde{M}}_x^{-}&={\alpha}^2\left[{R}_{M1}{\tilde{w}}_2\left( a,{\beta}_n\right)-{R}_{M2}{\tilde{w}}_1\left( a,{\beta}_n\right)\right] \end{array} $$
    (6.A.15)
    $$ \begin{array} {llll} {\tilde{M}}_y^{+}&={\beta}^2\left[{R}_{M4}{\tilde{w}}_2\left({a}_m,\beta \right)-{R}_{M3}{\tilde{w}}_1\left({a}_m,\beta \right)\right],\\ {\tilde{M}}_y^{-}&={\beta}^2\left[{R}_{M3}{\tilde{w}}_2\left({a}_m,\beta \right)-{R}_{M4}{\tilde{w}}_1\left({a}_m,\beta \right)\right] \end{array} $$
    (6.A.16)
  3. 3.

    Fourier transforms of torsional moments

    $$ \begin{array} {llll} {\tilde{M}}_{T x}^{+}&=\alpha {\beta}_n\left[{R}_{T2}{\tilde{w}}_2\left( a,{\beta}_n\right)-{R}_{T1}{\tilde{w}}_1\left( a,{\beta}_n\right)\right],\\ {\tilde{M}}_{T x}^{-}&=\alpha {\beta}_n\left[{R}_{T1}{\tilde{w}}_2\left( a,{\beta}_n\right)-{R}_{T2}{\tilde{w}}_1\left( a,{\beta}_n\right)\right] \end{array} $$
    (6.A.17)
    $$ \begin{array} {llll} {\tilde{M}}_{T y}^{+}&={\alpha}_m\beta \left[{R}_{T4}{\tilde{w}}_2\left({a}_m,\beta \right)-{R}_{T3}{\tilde{w}}_1\left({a}_m,\beta \right)\right],\\ {\tilde{M}}_{T y}^{-}&={\alpha}_m\beta \left[{R}_{T3}{\tilde{w}}_2\left({a}_m,\beta \right)-{R}_{T4}{\tilde{w}}_1\left({a}_m,\beta \right)\right] \end{array} $$
    (6.A.18)

6.1.2 Appendix B

Adopting the similar procedure of Takahashi’s beam model [11] for rib-stiffeners, taking the inertial effects of the rib-stiffeners into consideration, and applying Hooke’s law and the Newton’s second law, one can obtain the tensional forces of the rib-stiffeners as [18]

$$ {Q}_x^{+}=-\frac{K_x\left({K}_x-{m}_x{\omega}^2\right)}{2{K}_x-{m}_x{\omega}^2}{w}_1+\frac{K_x^2}{2{K}_x-{m}_x{\omega}^2}{w}_2 $$
(6.B.1)
$$ {Q}_x^{-}=-\frac{K_x^2}{2{K}_x-{m}_x{\omega}^2}{w}_1+\frac{K_x\left({K}_x-{m}_x{\omega}^2\right)}{2{K}_x-{m}_x{\omega}^2}{w}_2 $$
(6.B.2)
$$ {Q}_y^{+}=-\frac{K_y\left({K}_y-{m}_y{\omega}^2\right)}{2{K}_y-{m}_y{\omega}^2}{w}_1+\frac{K_y^2}{2{K}_y-{m}_y{\omega}^2}{w}_2 $$
(6.B.3)
$$ {Q}_y^{-}=-\frac{K_y^2}{2{K}_y-{m}_y{\omega}^2}{w}_1+\frac{K_y\left({K}_y-{m}_y{\omega}^2\right)}{2{K}_y-{m}_y{\omega}^2}{w}_2 $$
(6.B.4)

where ω is the circular frequency, (K x , K y ) are the tensional stiffness of half rib-stiffeners per unit length, and (m x , m y ) are the line mass density of the x- and y-wise stiffeners, respectively.

Likewise, the bending moments of the rib-stiffeners can be expressed as [18]

$$ {M}_x^{+}=\frac{E_x{I}_x^{*}\left({E}_x{I}_x^{*}-{\rho}_x{I}_x{\omega}^2\right)}{2{E}_x{I}_x^{*}-{\rho}_x{I}_x{\omega}^2}\frac{\partial^2{w}_1}{\partial {x}^2}-\frac{E_x^2{I_x^{*}}^2}{2{E}_x{I}_x^{*}-{\rho}_x{I}_x{\omega}^2}\frac{\partial^2{w}_2}{\partial {x}^2} $$
(6.B.5)
$$ {M}_x^{-}=\frac{E_x^2{I_x^{*}}^2}{2{E}_x{I}_x^{*}-{\rho}_x{I}_x{\omega}^2}\frac{\partial^2{w}_1}{\partial {x}^2}-\frac{E_x{I}_x^{*}\left({E}_x{I}_x^{*}-{\rho}_x{I}_x{\omega}^2\right)}{2{E}_x{I}_x^{*}-{\rho}_x{I}_x{\omega}^2}\frac{\partial^2{w}_2}{\partial {x}^2} $$
(6.B.6)
$$ {M}_y^{+}=\frac{E_y{I}_y^{*}\left({E}_y{I}_y^{*}-{\rho}_y{I}_y{\omega}^2\right)}{2{E}_y{I}_y^{*}-{\rho}_y{I}_y{\omega}^2}\frac{\partial^2{w}_1}{\partial {y}^2}-\frac{E_y^2{I_y^{*}}^2}{2{E}_y{I}_y^{*}-{\rho}_y{I}_y{\omega}^2}\frac{\partial^2{w}_2}{\partial {y}^2} $$
(6.B.7)
$$ {M}_y^{-}=\frac{E_y^2{I_y^{*}}^2}{2{E}_y{I}_y^{*}-{\rho}_y{I}_y{\omega}^2}\frac{\partial^2{w}_1}{\partial {y}^2}-\frac{E_y{I}_y^{*}\left({E}_y{I}_y^{*}-{\rho}_y{I}_y{\omega}^2\right)}{2{E}_y{I}_y^{*}-{\rho}_y{I}_y{\omega}^2}\frac{\partial^2{w}_2}{\partial {y}^2} $$
(6.B.8)

where (E x I * x , E y I * y ) are the bending stiffness of half rib-stiffeners per unit length and (ρ x , ρ y ), (I x , I y ) are the mass density and polar moment of inertia of the stiffeners, respectively, with subscripts x and y indicating the corresponding orientations of the stiffeners.

In a similar scheme, the torsional moments of the rib-stiffeners are given by [18]

$$ {M}_{\mathrm{T} x}^{+}=\frac{G_x{J}_x^{*}\left({G}_x{J}_x^{*}-{\rho}_x{J}_x{\omega}^2\right)}{2{G}_x{J}_x^{*}-{\rho}_x{J}_x{\omega}^2}\frac{\partial^2{w}_1}{\partial x\partial y}-\frac{G_x^2{J_x^{*}}^2}{2{G}_x{J}_x^{*}-{\rho}_x{J}_x{\omega}^2}\frac{\partial^2{w}_2}{\partial x\partial y} $$
(6.B.9)
$$ {M}_{\mathrm{T} x}^{-}=\frac{G_x^2{J_x^{*}}^2}{2{G}_x{J}_x^{*}-{\rho}_x{J}_x{\omega}^2}\frac{\partial^2{w}_1}{\partial x\partial y}-\frac{G_x{J}_x^{*}\left({G}_x{J}_x^{*}-{\rho}_x{J}_x{\omega}^2\right)}{2{G}_x{J}_x^{*}-{\rho}_x{J}_x{\omega}^2}\frac{\partial^2{w}_2}{\partial x\partial y} $$
(6.B.10)
$$ {M}_{\mathrm{T} y}^{+}=\frac{G_y{J}_y^{*}\left({G}_y{J}_y^{*}-{\rho}_y{J}_y{\omega}^2\right)}{2{G}_y{J}_y^{*}-{\rho}_y{J}_y{\omega}^2}\frac{\partial^2{w}_1}{\partial y\partial x}-\frac{G_y^2{J_y^{*}}^2}{2{G}_y{J}_y^{*}-{\rho}_y{J}_y{\omega}^2}\frac{\partial^2{w}_2}{\partial y\partial x} $$
(6.B.11)
$$ {M}_{\mathrm{T} y}^{-}=\frac{G_y^2{J_y^{*}}^2}{2{G}_y{J}_y^{*}-{\rho}_y{J}_y{\omega}^2}\frac{\partial^2{w}_1}{\partial y\partial x}-\frac{G_y{J}_y^{*}\left({G}_y{J}_y^{*}-{\rho}_y{J}_y{\omega}^2\right)}{2{G}_y{J}_y^{*}-{\rho}_y{J}_y{\omega}^2}\frac{\partial^2{w}_2}{\partial y\partial x} $$
(6.B.12)

where (G x J * x , G y J * y ) are the torsional stiffness of half rib-stiffeners per unit length and (J x , J y ) are the torsional moments of inertia of the stiffeners.

To simplify Eqs. (6.B.1), (6.B.2), (6.B.3), (6.B.4), (6.B.5), (6.B.6), (6.B.7), (6.B.8), (6.B.9), (6.B.10), (6.B.11), and (6.B.12), the following sets of specified characteristics are utilized to replace the coefficients of the general displacements:

  1. 1.

    Replacement of tensional force coefficients

    $$ {R}_{Q1}=\frac{K_x\left({K}_x-{m}_x{\omega}^2\right)}{2{K}_x-{m}_x{\omega}^2},\kern1em {R}_{Q2}=\frac{K_x^2}{2{K}_x-{m}_x{\omega}^2} $$
    (6.B.13)
    $$ {R}_{Q3}=\frac{K_y\left({K}_y-{m}_y{\omega}^2\right)}{2{K}_y-{m}_y{\omega}^2},\kern1em {R}_{Q4}=\frac{K_y^2}{2{K}_y-{m}_y{\omega}^2} $$
    (6.B.14)
  2. 2.

    Replacement of bending moment coefficients

    $$ {R}_{M1}=\frac{E_x{I}_x^{*}\left({E}_x{I}_x^{*}-{\rho}_x{I}_x{\omega}^2\right)}{2{E}_x{I}_x^{*}-{\rho}_x{I}_x{\omega}^2},\kern1em {R}_{M2}=\frac{E_x^2{I_x^{*}}^2}{2{E}_x{I}_x^{*}-{\rho}_x{I}_x{\omega}^2} $$
    (6.B.15)
    $$ {R}_{M3}=\frac{E_y{I}_y^{*}\left({E}_y{I}_y^{*}-{\rho}_y{I}_y{\omega}^2\right)}{2{E}_y{I}_y^{*}-{\rho}_y{I}_y{\omega}^2},\kern1em {R}_{M4}=\frac{E_y^2{I_y^{*}}^2}{2{E}_y{I}_y^{*}-{\rho}_y{I}_y{\omega}^2} $$
    (6.B.16)
  3. 3.

    Replacement of torsional moment coefficients

    $$ {R}_{T1}=\frac{G_x{J}_x^{*}\left({G}_x{J}_x^{*}-{\rho}_x{J}_x{\omega}^2\right)}{2{G}_x{J}_x^{*}-{\rho}_x{J}_x{\omega}^2},\kern1em {R}_{T2}=\frac{G_x^2{J_x^{*}}^2}{2{G}_x{J}_x^{*}-{\rho}_x{J}_x{\omega}^2} $$
    (6.B.17)
    $$ {R}_{T3}=\frac{G_y{J}_y^{*}\left({G}_y{J}_y^{*}-{\rho}_y{J}_y{\omega}^2\right)}{2{G}_y{J}_y^{*}-{\rho}_y{J}_y{\omega}^2},\kern1em {R}_{T4}=\frac{G_y^2{J_y^{*}}^2}{2{G}_y{J}_y^{*}-{\rho}_y{J}_y{\omega}^2} $$
    (6.B.18)

In terms of space-harmonic series, the expressions of the tensional forces, bending moments, and torsional moments can be simplified as follows:

  1. 1.

    Tensional forces

    $$ {Q}_x^{+}={\displaystyle \sum_{m=-\infty}^{+\infty }{\displaystyle \sum_{n=-\infty}^{+\infty}\left(-{R}_{Q1}{\alpha}_{1, mn}+{R}_{Q2}{\alpha}_{2, mn}\right){\mathrm{e}}^{- i\left({\alpha}_m x+{\beta}_n y\right)}}} $$
    (6.B.19)
    $$ {Q}_x^{-}={\displaystyle \sum_{m=-\infty}^{+\infty }{\displaystyle \sum_{n=-\infty}^{+\infty}\left(-{R}_{Q2}{\alpha}_{1, mn}+{R}_{Q1}{\alpha}_{2, mn}\right){\mathrm{e}}^{- i\left({\alpha}_m x+{\beta}_n y\right)}}} $$
    (6.B.20)
    $$ {Q}_y^{+}={\displaystyle \sum_{m=-\infty}^{+\infty }{\displaystyle \sum_{n=-\infty}^{+\infty}\left(-{R}_{Q3}{\alpha}_{1, mn}+{R}_{Q4}{\alpha}_{2, mn}\right){\mathrm{e}}^{- i\left({\alpha}_m x+{\beta}_n y\right)}}} $$
    (6.B.21)
    $$ {Q}_y^{-}={\displaystyle \sum_{m=-\infty}^{+\infty }{\displaystyle \sum_{n=-\infty}^{+\infty}\left(-{R}_{Q4}{\alpha}_{1, mn}+{R}_{Q3}{\alpha}_{2, mn}\right){\mathrm{e}}^{- i\left({\alpha}_m x+{\beta}_n y\right)}}} $$
    (6.B.22)
  2. 2.

    Bending moments

    $$ {M}_x^{+}={\displaystyle \sum_{m=-\infty}^{+\infty }{\displaystyle \sum_{n=-\infty}^{+\infty}\left(-{R}_{M1}{\alpha}_{1, mn}+{R}_{M2}{\alpha}_{2, mn}\right){\alpha}_m^2{\mathrm{e}}^{- i\left({\alpha}_m x+{\beta}_n y\right)}}} $$
    (6.B.23)
    $$ {M}_x^{-}={\displaystyle \sum_{m=-\infty}^{+\infty }{\displaystyle \sum_{n=-\infty}^{+\infty}\left(-{R}_{M2}{\alpha}_{1, mn}+{R}_{M1}{\alpha}_{2, mn}\right){\alpha}_m^2{\mathrm{e}}^{- i\left({\alpha}_m x+{\beta}_n y\right)}}} $$
    (6.B.24)
    $$ {M}_y^{+}={\displaystyle \sum_{m=-\infty}^{+\infty }{\displaystyle \sum_{n=-\infty}^{+\infty}\left(-{R}_{M3}{\alpha}_{1, mn}+{R}_{M4}{\alpha}_{2, mn}\right){\beta}_n^2{\mathrm{e}}^{- i\left({\alpha}_m x+{\beta}_n y\right)}}} $$
    (6.B.25)
    $$ {M}_y^{-}={\displaystyle \sum_{m=-\infty}^{+\infty }{\displaystyle \sum_{n=-\infty}^{+\infty}\left(-{R}_{M4}{\alpha}_{1, mn}+{R}_{M3}{\alpha}_{2, mn}\right){\beta}_n^2{\mathrm{e}}^{- i\left({\alpha}_m x+{\beta}_n y\right)}}} $$
    (6.B.26)
  3. 3.

    Torsional moments

    $$ {M}_{\mathrm{T} x}^{+}={\displaystyle \sum_{m=-\infty}^{+\infty }{\displaystyle \sum_{n=-\infty}^{+\infty}\left(-{R}_{T1}{\alpha}_{1, mn}+{R}_{T2}{\alpha}_{2, mn}\right){\alpha}_m{\beta}_n{\mathrm{e}}^{- i\left({\alpha}_m x+{\beta}_n y\right)}}} $$
    (6.B.27)
    $$ {M}_{\mathrm{T} x}^{-}={\displaystyle \sum_{m=-\infty}^{+\infty }{\displaystyle \sum_{n=-\infty}^{+\infty}\left(-{R}_{T2}{\alpha}_{1, mn}+{R}_{T1}{\alpha}_{2, mn}\right){\alpha}_m{\beta}_n{\mathrm{e}}^{- i\left({\alpha}_m x+{\beta}_n y\right)}}} $$
    (6.B.28)
    $$ {M}_{\mathrm{T} y}^{+}={\displaystyle \sum_{m=-\infty}^{+\infty }{\displaystyle \sum_{n=-\infty}^{+\infty}\left(-{R}_{T3}{\alpha}_{1, mn}+{R}_{T4}{\alpha}_{2, mn}\right){\alpha}_m{\beta}_n{\mathrm{e}}^{- i\left({\alpha}_m x+{\beta}_n y\right)}}} $$
    (6.B.29)
    $$ {M}_{\mathrm{T} y}^{-}={\displaystyle \sum_{m=-\infty}^{+\infty }{\displaystyle \sum_{n=-\infty}^{+\infty}\left(-{R}_{T4}{\alpha}_{1, mn}+{R}_{T3}{\alpha}_{2, mn}\right){\alpha}_m{\beta}_n{\mathrm{e}}^{- i\left({\alpha}_m x+{\beta}_n y\right)}}} $$
    (6.B.30)

6.1.3 Appendix C

The deflection coefficients of the two face panels are

$$ \left\{{\alpha}_{1, kl}\right\}={\left[\begin{array}{cccccccccc}\hfill {\alpha}_{1,11}\hfill & \hfill {\alpha}_{1,21}\hfill & \hfill \cdot \cdot \cdot \hfill & \hfill {\alpha}_{1, K1}\hfill & \hfill {\alpha}_{1,12}\hfill & \hfill {\alpha}_{1,22}\hfill & \hfill \cdot \cdot \cdot \hfill & \hfill {\alpha}_{1, K2}\hfill & \hfill \cdot \cdot \cdot \hfill & \hfill {\alpha}_{1, K L}\hfill \end{array}\right]}_{KL\times 1}^{\boldsymbol{T}} $$
(6.C.1)
$$ \left\{{\alpha}_{2, kl}\right\}={\left[\begin{array}{cccccccccc}\hfill {\alpha}_{2,11}\hfill & \hfill {\alpha}_{2,21}\hfill & \hfill \cdot \cdot \cdot \hfill & \hfill {\alpha}_{2, K1}\hfill & \hfill {\alpha}_{2,12}\hfill & \hfill {\alpha}_{2,22}\hfill & \hfill \cdot \cdot \cdot \hfill & \hfill {\alpha}_{2, K2}\hfill & \hfill \cdot \cdot \cdot \hfill & \hfill {\alpha}_{2, K L}\hfill \end{array}\right]}_{KL\times 1}^{\boldsymbol{T}} $$
(6.C.2)

The right-hand side of Eq. (6.70) represents the generalized force, that is,

$$ \left\{{F}_{kl}\right\}={\left[\begin{array}{cccccccccc}\hfill {F}_{11}\hfill & \hfill {F}_{21}\hfill & \hfill \cdot \cdot \cdot \hfill & \hfill {F}_{K1}\hfill & \hfill {F}_{12}\hfill & \hfill {F}_{22}\hfill & \hfill \cdot \cdot \cdot \hfill & \hfill {F}_{K2}\hfill & \hfill \cdot \cdot \cdot \hfill & \hfill {F}_{K L}\hfill \end{array}\right]}_{K L\times 1}^{\boldsymbol{T}} $$
(6.C.3)

where

$$ {F}_{kl}=\left\{\begin{array}{l@{\quad}l@{\quad}l}2 I{l}_x{l}_y & \mathrm{at} & k=\frac{K+1}{2}\ \&\ l=\frac{L+1}{2} \\[6pt] 0 & \mathrm{at} & k\ne \frac{K+1}{2}\ \parallel\ l\ne \frac{L+1}{2} \end{array}\right. $$
(6.C.4)
$$ {\lambda}_{k l}^{11,1}=\left[{D}_1{\left({\alpha}_k^2+{\beta}_l^2\right)}^2-{m}_1{\omega}^2-\frac{\omega^2{\rho}_0}{i{ k}_{z, kl}}+\frac{\omega^2{\rho}_{\mathrm{cav}} \cos \left({k}_{z,\mathrm{cav}, kl} d\right)}{k_{z,\mathrm{cav}, kl} \sin \left({k}_{z,\mathrm{cav}, kl} d\right)}\right]\cdot {l}_x{l}_y $$
(6.C.5)
$$ {T}_{11,1}=\mathrm{diag}{\left[\begin{array}{cccccccccc}\hfill {\lambda}_{11}^{11,1}\hfill & \hfill {\lambda}_{21}^{11,1}\hfill & \hfill \cdots \hfill & \hfill {\lambda}_{K1}^{11,1}\hfill & \hfill {\lambda}_{12}^{11,1}\hfill & \hfill {\lambda}_{22}^{11,1}\hfill & \hfill \cdots \hfill & \hfill {\lambda}_{K2}^{11,1}\hfill & \hfill \cdots \hfill & \hfill {\lambda}_{K L}^{11,1}\hfill \end{array}\right]}_{K L\times KL} $$
(6.C.6)
$$ {\lambda}_{K L}^{11,2}={l}_x\times \mathrm{diag}{\left[\begin{array}{cccc}\hfill {R}_{Q1}- i{\alpha}_1^3{R}_{M1}\hfill & \hfill {R}_{Q1}- i{\alpha}_2^3{R}_{M1}\hfill & \hfill \cdots \hfill & \hfill {R}_{Q1}- i{\alpha}_K^3{R}_{M1}\hfill \end{array}\right]}_{K\times L} $$
(6.C.7)
$$ {T}_{11,2}={\left[\begin{array}{cccc} {\lambda}_{KL}^{11,2} & {\lambda}_{KL}^{11,2} & \cdots & {\lambda}_{KL}^{11,2} \\[6pt] {\lambda}_{KL}^{11,2} & {\lambda}_{KL}^{11,2} & \cdots & {\lambda}_{KL}^{11,2} \\[3pt] \vdots & \vdots & \ddots & \vdots \\[3pt] {\lambda}_{KL}^{11,2} & {\lambda}_{KL}^{11,2} & \cdots & {\lambda}_{KL}^{11,2} \end{array}\right]}_{KL\times KL} $$
(6.C.8)
$$ {\lambda}_{K l, n}^{11,3}={l}_x\times \mathrm{diag}{\left[\begin{array}{cccc} - i{\alpha}_1{\beta}_l{\beta}_n{R}_{T1} & - i{\alpha}_2{\beta}_l{\beta}_n{R}_{T1} & \cdots & - i{\alpha}_K{\beta}_l{\beta}_n{R}_{T1} \end{array}\right]}_{K\times L} $$
(6.C.9)
$$ {T}_{11,3}={\left[\begin{array}{cccc} {\lambda}_{K1,1}^{11,3} & {\lambda}_{K1,2}^{11,3} & \cdots & {\lambda}_{K1, L}^{11,3} \\[6pt] {\lambda}_{K2,1}^{11,3} & {\lambda}_{K2,2}^{11,3} & \cdots & {\lambda}_{K2, L}^{11,3} \\[3pt] \vdots & \vdots & \ddots & \vdots \\[3pt] {\lambda}_{K L,1}^{11,3} & {\lambda}_{K L,2}^{11,3} & \cdots & {\lambda}_{K L, L}^{11,3} \end{array}\right]}_{K L\times KL} $$
(6.C.10)
$$ {\lambda}_{K l}^{11,4}={l}_y\times {\left[\begin{array}{cccc} {R}_{Q3}- i{\beta}_l^3{R}_{M3} & {R}_{Q3}- i{\beta}_l^3{R}_{M3} & \cdots & {R}_{Q3}- i{\beta}_l^3{R}_{M3} \\[6pt] {R}_{Q3}- i{\beta}_l^3{R}_{M3} & {R}_{Q3}- i{\beta}_l^3{R}_{M3} & \cdots & {R}_{Q3}- i{\beta}_l^3{R}_{M3} \\[3pt] \vdots & \vdots & \ddots & \vdots \\[3pt] {R}_{Q3}- i{\beta}_l^3{R}_{M3} & {R}_{Q3}- i{\beta}_l^3{R}_{M3} & \cdots & {R}_{Q3}- i{\beta}_l^3{R}_{M3} \end{array}\right]}_{K\times L} $$
(6.C.11)
$$ {T}_{11,4}=\mathrm{diag}{\left[\begin{array}{cccc} {\lambda}_{K1}^{11,4} & {\lambda}_{K2}^{11,4} & \cdots & {\lambda}_{K L}^{11,4} \end{array}\right]}_{K L\times KL} $$
(6.C.12)
$$ {\lambda}_{K l}^{11,5}={l}_y\times {\left[\begin{array}{cccc} - i{\alpha}_1{\beta}_l{\alpha}_1{R}_{T3} & - i{\alpha}_1{\beta}_l{\alpha}_2{R}_{T3} & \cdots & - i{\alpha}_1{\beta}_l{\alpha}_K{R}_{T3} \\[6pt] - i{\alpha}_2{\beta}_l{\alpha}_1{R}_{T3} & - i{\alpha}_2{\beta}_l{\alpha}_2{R}_{T3} & \cdots & - i{\alpha}_2{\beta}_l{\alpha}_K{R}_{T3} \\[3pt] \vdots & \vdots & \ddots & \vdots \\[3pt] - i{\alpha}_K{\beta}_l{\alpha}_1{R}_{T3} & - i{\alpha}_K{\beta}_l{\alpha}_2{R}_{T3} & \cdots & - i{\alpha}_K{\beta}_l{\alpha}_K{R}_{T3} \end{array}\right]}_{K\times L} $$
(6.C.13)
$$ {T}_{11,5}=\mathrm{diag}{\left[\begin{array}{cccc} {\lambda}_{K1}^{11,5} & {\lambda}_{K2}^{11,5} & \cdots & {\lambda}_{K L}^{11,5} \end{array}\right]}_{K L\times KL} $$
(6.C.14)
$$ {\lambda}_{k l}^{12,1}=-\frac{\omega^2{\rho}_{cav}}{k_{z, cav, kl} \sin \left({k}_{z, cav, kl} d\right)}\cdot {l}_x{l}_y $$
(6.C.15)
$$ {T}_{12,1}=\mathrm{diag}{\left[\begin{array}{cccccccccc} {\lambda}_{11}^{12,1} & {\lambda}_{21}^{12,1} & \cdots & {\lambda}_{K1}^{12,1} & {\lambda}_{12}^{12,1} & {\lambda}_{22}^{12,1} & \cdots & {\lambda}_{K2}^{12,1} & \cdots & {\lambda}_{K L}^{12,1} \end{array}\right]}_{K L\times KL} $$
(6.C.16)
$$ {\lambda}_{K L}^{12,2}\!=\!{l}_x\!\times\! \mathrm{diag}{\left[\begin{array}{cccc} -{R}_{Q2}\!+\! i{\alpha}_1^3{R}_{M2} & -{R}_{Q2}\!+\! i{\alpha}_2^3{R}_{M2} & \cdots & -{R}_{Q2}\!+\! i{\alpha}_K^3{R}_{M2} \end{array}\right]}_{K\times L} $$
(6.C.17)
$$ {T}_{12,2}={\left[\begin{array}{cccc} {\lambda}_{KL}^{12,2} & {\lambda}_{KL}^{12,2} & \cdots & {\lambda}_{KL}^{12,2} \\[6pt] {\lambda}_{KL}^{12,2} & {\lambda}_{KL}^{12,2} & \cdots & {\lambda}_{KL}^{12,2} \\[3pt] \vdots & \vdots & \ddots & \vdots \\[3pt] {\lambda}_{KL}^{12,2} & {\lambda}_{KL}^{12,2} & \cdots & {\lambda}_{KL}^{12,2} \end{array}\right]}_{KL\times KL} $$
(6.C.18)
$$ {\lambda}_{K l, n}^{12,3}={l}_x\times \mathrm{diag}{\left[\begin{array}{cccc} i{\alpha}_1{\beta}_l{\beta}_n{R}_{T2} & i{\alpha}_2{\beta}_l{\beta}_n{R}_{T2} & \cdots & i{\alpha}_K{\beta}_l{\beta}_n{R}_{T2} \end{array}\right]}_{K\times L} $$
(6.C.19)
$$ {T}_{12,3}={\left[\begin{array}{cccc} {\lambda}_{K1,1}^{12,3} & {\lambda}_{K1,2}^{12,3} & \cdots & {\lambda}_{K1, L}^{12,3} \\[6pt] {\lambda}_{K2,1}^{12,3} & {\lambda}_{K2,2}^{12,3} & \cdots & {\lambda}_{K2, L}^{12,3} \\[3pt] \vdots & \vdots & \ddots & \vdots \\[3pt] {\lambda}_{K L,1}^{12,3} & {\lambda}_{K L,2}^{12,3} & \cdots & {\lambda}_{K L, L}^{12,3} \end{array}\right]}_{K L\times KL} $$
(6.C.20)
$$ {\lambda}_{K l}^{12,4}={l}_y\times {\left[\begin{array}{cccc} -{R}_{Q4}+ i{\beta}_l^3{R}_{M4} & -{R}_{Q4}+ i{\beta}_l^3{R}_{M4} & \cdots & -{R}_{Q4}+ i{\beta}_l^3{R}_{M4} \\[6pt] -{R}_{Q4}+ i{\beta}_l^3{R}_{M4} & -{R}_{Q4}+ i{\beta}_l^3{R}_{M4} & \cdots & -{R}_{Q4}+ i{\beta}_l^3{R}_{M4} \\[3pt] \vdots & \vdots & \ddots & \vdots \\[3pt] -{R}_{Q4}+ i{\beta}_l^3{R}_{M4} & -{R}_{Q4}+ i{\beta}_l^3{R}_{M4} & \cdots & -{R}_{Q4}+ i{\beta}_l^3{R}_{M4} \end{array}\right]}_{K\times L} $$
(6.C.21)
$$ {T}_{12,4}=\mathrm{diag}{\left[\begin{array}{cccc} {\lambda}_{K1}^{12,4} & {\lambda}_{K2}^{12,4} & \cdots & {\lambda}_{K L}^{12,4} \end{array}\right]}_{K L\times KL} $$
(6.C.22)
$$ {\lambda}_{K l}^{12,5}={l}_y\times {\left[\begin{array}{cccc} i{\alpha}_1{\beta}_l{\alpha}_1{R}_{T4} & i{\alpha}_1{\beta}_l{\alpha}_2{R}_{T4} & \cdots & i{\alpha}_1{\beta}_l{\alpha}_K{R}_{T4} \\[6pt] i{\alpha}_2{\beta}_l{\alpha}_1{R}_{T4} & i{\alpha}_2{\beta}_l{\alpha}_2{R}_{T4} & \cdots & i{\alpha}_2{\beta}_l{\alpha}_K{R}_{T4} \\[3pt] \vdots & \vdots & \ddots & \vdots \\[3pt] i{\alpha}_K{\beta}_l{\alpha}_1{R}_{T4} & i{\alpha}_K{\beta}_l{\alpha}_2{R}_{T4} & \cdots & i{\alpha}_K{\beta}_l{\alpha}_K{R}_{T4} \end{array}\right]}_{K\times L} $$
(6.C.23)
$$ {T}_{12,5}=\mathrm{diag}{\left[\begin{array}{cccc} {\lambda}_{K1}^{12,5} & {\lambda}_{K2}^{12,5} & \cdots & {\lambda}_{K L}^{12,5} \end{array}\right]}_{K L\times KL} $$
(6.C.24)
$$ {\lambda}_{k l}^{21,1}=-\frac{\omega^2{\rho}_{\mathrm{cav}}}{k_{z,\mathrm{cav}, kl} \sin \left({k}_{z,\mathrm{cav}, kl} d\right)}\cdot {l}_x{l}_y $$
(6.C.25)
$$ {T}_{21,1}=\mathrm{diag}{\left[\begin{array}{cccccccccc} {\lambda}_{11}^{21,1} & {\lambda}_{21}^{21,1} & \cdots & {\lambda}_{K1}^{21,1} & {\lambda}_{12}^{21,1} & {\lambda}_{22}^{21,1} & \cdots & {\lambda}_{K2}^{21,1} & \cdots & {\lambda}_{K L}^{21,1} \end{array}\right]}_{K L\times KL} $$
(6.C.26)
$$ {\lambda}_{K L}^{21,2}\!=\!{l}_x\!\times\! \mathrm{diag}{\left[\begin{array}{cccc} -{R}_{Q2}\!+\! i{\alpha}_1^3{R}_{M2} & -{R}_{Q2}\!+\! i{\alpha}_2^3{R}_{M2} & \cdots & -{R}_{Q2}\!+\! i{\alpha}_K^3{R}_{M2} \end{array}\right]}_{K\times L} $$
(6.C.27)
$$ {T}_{21,2}={\left[\begin{array}{cccc} {\lambda}_{KL}^{21,2} & {\lambda}_{KL}^{21,2} & \cdots & {\lambda}_{KL}^{21,2} \\[6pt] {\lambda}_{KL}^{21,2} & {\lambda}_{KL}^{21,2} & \cdots & {\lambda}_{KL}^{21,2} \\[3pt] \vdots & \vdots & \ddots & \vdots \\[3pt] {\lambda}_{KL}^{21,2} & {\lambda}_{KL}^{21,2} & \cdots & {\lambda}_{KL}^{21,2} \end{array}\right]}_{KL\times KL} $$
(6.C.28)
$$ {\lambda}_{K l, n}^{21,3}={l}_x\times \mathrm{diag}{\left[\begin{array}{cccc} i{\alpha}_1{\beta}_l{\beta}_n{R}_{T2} & i{\alpha}_2{\beta}_l{\beta}_n{R}_{T2} & \cdots & i{\alpha}_K{\beta}_l{\beta}_n{R}_{T2} \end{array}\right]}_{K\times L} $$
(6.C.29)
$$ {T}_{21,3}={\left[\begin{array}{cccc} {\lambda}_{K1,1}^{21,3} & {\lambda}_{K1,2}^{21,3} & \cdots & {\lambda}_{K1, L}^{21,3} \\[6pt] {\lambda}_{K2,1}^{21,3} & {\lambda}_{K2,2}^{21,3} & \cdots & {\lambda}_{K2, L}^{21,3} \\[3pt] \vdots & \vdots & \ddots & \vdots \\[3pt] {\lambda}_{K L,1}^{21,3} & {\lambda}_{K L,2}^{21,3} & \cdots & {\lambda}_{K L, L}^{21,3} \end{array}\right]}_{K L\times KL} $$
(6.C.30)
$$ {\lambda}_{K l}^{21,4}={l}_y\times {\left[\begin{array}{cccc} -{R}_{Q4}+ i{\beta}_l^3{R}_{M4} & -{R}_{Q4}+ i{\beta}_l^3{R}_{M4} & \cdots & -{R}_{Q4}+ i{\beta}_l^3{R}_{M4} \\[6pt] -{R}_{Q4}+ i{\beta}_l^3{R}_{M4} & -{R}_{Q4}+ i{\beta}_l^3{R}_{M4} & \cdots & -{R}_{Q4}+ i{\beta}_l^3{R}_{M4} \\[3pt] \vdots & \vdots & \ddots & \vdots \\[3pt] -{R}_{Q4}+ i{\beta}_l^3{R}_{M4} & -{R}_{Q4}+ i{\beta}_l^3{R}_{M4} & \cdots & -{R}_{Q4}+ i{\beta}_l^3{R}_{M4} \end{array}\right]}_{K\times L} $$
(6.C.31)
$$ {T}_{21,4}=\mathrm{diag}{\left[\begin{array}{cccc} {\lambda}_{K1}^{21,4} & {\lambda}_{K2}^{21,4} & \cdots & {\lambda}_{K L}^{21,4} \end{array}\right]}_{K L\times KL} $$
(6.C.32)
$$ {\lambda}_{K l}^{21,5}={l}_y\times {\left[\begin{array}{cccc} i{\alpha}_1{\beta}_l{\alpha}_1{R}_{T4} & i{\alpha}_1{\beta}_l{\alpha}_2{R}_{T4} & \cdots & i{\alpha}_1{\beta}_l{\alpha}_K{R}_{T4} \\ i{\alpha}_2{\beta}_l{\alpha}_1{R}_{T4} & i{\alpha}_2{\beta}_l{\alpha}_2{R}_{T4} & \cdots & i{\alpha}_2{\beta}_l{\alpha}_K{R}_{T4} \\ \vdots & \vdots & \ddots & \vdots \\ i{\alpha}_K{\beta}_l{\alpha}_1{R}_{T4} & i{\alpha}_K{\beta}_l{\alpha}_2{R}_{T4} & \cdots & i{\alpha}_K{\beta}_l{\alpha}_K{R}_{T4} \end{array}\right]}_{K\times L} $$
(6.C.33)
$$ {T}_{21,5}=\mathrm{diag}{\left[\begin{array}{cccc} {\lambda}_{K1}^{21,5} & {\lambda}_{K2}^{21,5} & \cdots & {\lambda}_{K L}^{21,5} \end{array}\right]}_{K L\times KL} $$
(6.C.34)
$$ {\lambda}_{k l}^{22,1}=\left[{D}_2{\left({\alpha}_k^2+{\beta}_l^2\right)}^2-{m}_2{\omega}^2-\frac{\omega^2{\rho}_0}{i{ k}_{z, kl}}+\frac{\omega^2{\rho}_{\mathrm{cav}} \cos \left({k}_{z,\mathrm{cav}, kl} d\right)}{k_{z,\mathrm{cav}, kl} \sin \left({k}_{z,\mathrm{cav}, kl} d\right)}\right]\cdot {l}_x{l}_y $$
(6.C.35)
$$ {T}_{22,1}=\mathrm{diag}{\left[\begin{array}{cccccccccc} {\lambda}_{11}^{22,1} & {\lambda}_{21}^{22,1} & \cdots & {\lambda}_{K1}^{22,1} & {\lambda}_{12}^{22,1} & {\lambda}_{22}^{22,1} & \cdots & {\lambda}_{K2}^{22,1} & \cdots & {\lambda}_{K L}^{22,1} \end{array}\right]}_{K L\times KL} $$
(6.C.36)
$$ {\lambda}_{K L}^{22,2}={l}_x\times \mathrm{diag}{\left[\begin{array}{cccc} {R}_{Q1}- i{\alpha}_1^3{R}_{M1} & {R}_{Q1}- i{\alpha}_2^3{R}_{M1} & \cdots & {R}_{Q1}- i{\alpha}_K^3{R}_{M1} \end{array}\right]}_{K\times L} $$
(6.C.37)
$$ {T}_{22,2}={\left[\begin{array}{cccc} {\lambda}_{KL}^{22,2} & {\lambda}_{KL}^{22,2} & \cdots & {\lambda}_{KL}^{22,2} \\[6pt] {\lambda}_{KL}^{22,2} & {\lambda}_{KL}^{22,2} & \cdots & {\lambda}_{KL}^{22,2} \\[3pt] \vdots & \vdots & \ddots & \vdots \\[3pt] {\lambda}_{KL}^{22,2} & {\lambda}_{KL}^{22,2} & \cdots & {\lambda}_{KL}^{22,2} \end{array}\right]}_{KL\times KL} $$
(6.C.38)
$$ {\lambda}_{K l, n}^{22,3}={l}_x\times \mathrm{diag}{\left[\begin{array}{cccc} - i{\alpha}_1{\beta}_l{\beta}_n{R}_{T1} & - i{\alpha}_2{\beta}_l{\beta}_n{R}_{T1} & \cdots & - i{\alpha}_K{\beta}_l{\beta}_n{R}_{T1} \end{array}\right]}_{K\times L} $$
(6.C.39)
$$ {T}_{22,3}={\left[\begin{array}{cccc} {\lambda}_{K1,1}^{22,3} & {\lambda}_{K1,2}^{22,3} & \cdots & {\lambda}_{K1, L}^{22,3} \\ {\lambda}_{K2,1}^{22,3} & {\lambda}_{K2,2}^{22,3} & \cdots & {\lambda}_{K2, L}^{22,3} \\[3pt] \vdots & \vdots & \ddots & \vdots \\[3pt] {\lambda}_{K L,1}^{22,3} & {\lambda}_{K L,2}^{22,3} & \cdots & {\lambda}_{K L, L}^{22,3} \end{array}\right]}_{K L\times KL} $$
(6.C.40)
$$ {\lambda}_{K l}^{22,4}={l}_y\times {\left[\begin{array}{cccc} {R}_{Q3}- i{\beta}_l^3{R}_{M3} & {R}_{Q3}- i{\beta}_l^3{R}_{M3} & \cdots & {R}_{Q3}- i{\beta}_l^3{R}_{M3} \\[6pt] {R}_{Q3}- i{\beta}_l^3{R}_{M3} & {R}_{Q3}- i{\beta}_l^3{R}_{M3} & \cdots & {R}_{Q3}- i{\beta}_l^3{R}_{M3} \\[3pt] \vdots & \vdots & \ddots & \vdots \\[3pt] {R}_{Q3}- i{\beta}_l^3{R}_{M3} & {R}_{Q3}- i{\beta}_l^3{R}_{M3} & \cdots & {R}_{Q3}- i{\beta}_l^3{R}_{M3} \end{array}\right]}_{K\times L} $$
(6.C.41)
$$ {T}_{22,4}=\mathrm{diag}{\left[\begin{array}{cccc} {\lambda}_{K1}^{22,4} & {\lambda}_{K2}^{22,4} & \cdots & {\lambda}_{K L}^{22,4} \end{array}\right]}_{K L\times KL} $$
(6.C.42)
$$ {\lambda}_{K l}^{22,5}={l}_y\times {\left[\begin{array}{cccc} - i{\alpha}_1{\beta}_l{\alpha}_1{R}_{T3} & - i{\alpha}_1{\beta}_l{\alpha}_2{R}_{T3} & \cdots & - i{\alpha}_1{\beta}_l{\alpha}_K{R}_{T3} \\[6pt] - i{\alpha}_2{\beta}_l{\alpha}_1{R}_{T3} & - i{\alpha}_2{\beta}_l{\alpha}_2{R}_{T3} & \cdots & - i{\alpha}_2{\beta}_l{\alpha}_K{R}_{T3} \\[3pt] \vdots & \vdots & \ddots & \vdots \\[3pt] - i{\alpha}_K{\beta}_l{\alpha}_1{R}_{T3} & - i{\alpha}_K{\beta}_l{\alpha}_2{R}_{T3} & \cdots & - i{\alpha}_K{\beta}_l{\alpha}_K{R}_{T3} \end{array}\right]}_{K\times L} $$
(6.C.43)
$$ {T}_{22,5}=\mathrm{diag}{\left[\begin{array}{cccc} {\lambda}_{K1}^{22,5} & {\lambda}_{K2}^{22,5} & \cdots & {\lambda}_{K L}^{22,5} \end{array}\right]}_{K L\times KL} $$
(6.C.44)

Using the definition of the sub-matrices presented above, one obtains

$$ {T}_{11}={T}_{11,1}{+}{T}_{11,2}{+}{T}_{11,3}{+}{T}_{11,4}{+}{T}_{11,5},\kern1em {T}_{22}={T}_{22,1}{+}{T}_{22,2}{+}{T}_{22,3}{+}{T}_{22,4}{+}{T}_{22,5} $$
(6.C.45)
$$ {T}_{12}={T}_{12,1}{+}{T}_{12,2}{+}{T}_{12,3}{+}{T}_{12,4}{+}{T}_{12,5},\kern1em {T}_{21}={T}_{21,1}{+}{T}_{21,2}{+}{T}_{21,3}{+}{T}_{21,4}{+}{T}_{21,5} $$
(6.C.46)

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Science Press Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lu, T., Xin, F. (2014). Sound Propagation in Rib-Stiffened Sandwich Structures with Cavity Absorption. In: Vibro-Acoustics of Lightweight Sandwich Structures. Springer Tracts in Mechanical Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55358-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55358-5_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-55357-8

  • Online ISBN: 978-3-642-55358-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics