Skip to main content

HyperNEAT: The First Five Years

  • Chapter
  • First Online:
Growing Adaptive Machines

Part of the book series: Studies in Computational Intelligence ((SCI,volume 557))

Abstract

HyperNEAT, which stands for Hypercube-based NeuroEvolution of Augmenting Topologies, is a method for evolving indirectly-encoded artificial neural networks (ANNs) that was first introduced in 2007. By exploiting a unique indirect encoding called Compositional Pattern Producing Networks (CPPNs) that does not require a typical developmental stage, HyperNEAT introduced several novel capabilities to the field of neuroevolution (i.e. evolving artificial neural networks). Among these, (1) large ANNs can be compactly encoded by small genomes, (2) the size and resolution of evolved ANNs can scale up or down even after training is completed, and (3) neural structure can be evolved to exploit problem geometry. Five years after its introduction, researchers have leveraged these capabilities to produce a broad range of successful experiments and extensions that highlight the potential for future research to build further on the ideas introduced by HyperNEAT. This chapter reviews these first 5 years of research that builds upon this approach, and culminates with thoughts on promising future directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Aaltonen et al., (over 100 authors). Measurement of the top quark mass with dilepton events selected using neuroevolution at CDF. Phys. Rev. Lett. 102(15), 2001 (2009)

    Google Scholar 

  2. L. Altenberg, Evolving better representations through selective genome growth. in Proceedings of the IEEE World Congress on Computational Intelligence (IEEE Press, Piscataway, NJ, 1994), pp. 182–187

    Google Scholar 

  3. P.J. Angeline, G.M. Saunders, J.B. Pollack, An evolutionary algorithm that constructs recurrent neural networks. IEEE Trans. Neural Networks 5, 54–65 (1993)

    Article  Google Scholar 

  4. J.E. Auerbach, J.C. Bongard, Dynamic resolution in the co-evolution of morphology and control. in Proceedings of the 12th International Conference on the Synthesis and Simulation of Living Systems (ALife XII) (2010)

    Google Scholar 

  5. J.E. Auerbach, J.C. Bongard, Evolving CPPNs to grow three dimensional structures. in Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2010) (ACM Press, New York, NY, 2010)

    Google Scholar 

  6. J.E. Auerbach, J.C. Bongard, Evolving complete robots with CPPN-NEAT: the utility of recurrent connections. in Proceedings of the 13th Annual Conference Companion on Genetic and Evolutionary Computation (ACM, 2011)

    Google Scholar 

  7. J.E. Auerbach, J.C. Bongard, On the relationship between environmental and mechanical complexity in evolved robots. in 13th International Conference on the Synthesis and Simulation of Living Systems (ALife XIII) (ACM, 2012)

    Google Scholar 

  8. J.E. Auerbach, J.C. Bongard, On the relationship between environmental and morphological complexity in evolved robots. in Proceedings of the 14th Annual Conference Companion on Genetic and Evolutionary Computation (ACM, 2012)

    Google Scholar 

  9. E. Bahceci, R. Miikkulainen, Transfer of evolved pattern-based heuristics in games. in Proceedings of the IEEE Symposium on Computational Intelligence and Games (CIG-2008) (IEEE Press, Piscataway, NJ, 2008)

    Google Scholar 

  10. R.D. Beer, J.C. Gallagher, Evolving dynamical neural networks for adaptive behavior. Adapt. behav. 1(1), 91–122 (1992)

    Article  Google Scholar 

  11. P.J. Bentley, S. Kumar, Three ways to grow designs: a comparison of embryogenies for an evolutionary design problem. in Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-1999) (1999), pp. 35–43

    Google Scholar 

  12. J. Blynel, D. Floreano, Levels of dynamics and adaptive behavior in evolutionary neural controllers. in Proceedings of the Seventh International Conference on Simulation of Adaptive Behavior on From Animals to Animats (2002), pp. 272–281

    Google Scholar 

  13. J.C. Bongard, Evolving modular genetic regulatory networks. in Proceedings of the 2002 Congress on Evolutionary Computation (2002)

    Google Scholar 

  14. Z. Buk, J. Koutník, M. Šnorek, NEAT in HyperNEAT substituted with genetic programming. in Adaptive and Natural Computing Algorithms (2009), pp. 243–252

    Google Scholar 

  15. D.B. Chklovskii, A.A. Koulakov, Maps in the brain: what can we learn from them? Annu. Rev. Neurosci. 27, 369–392 (2004)

    Article  Google Scholar 

  16. P.M. Churchland, Some reductive strategies in cognitive neurobiology. Mind 95, 279–309 (1986)

    Article  Google Scholar 

  17. J. Clune, B.E. Beckmann, P.K. McKinley, C. Ofria, Investigating whether HyperNEAT produces modular neural networks. in Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2010) (ACM Press, New York, NY, 2010)

    Google Scholar 

  18. J. Clune, C. Ofria, R.T. Pennock, How a generative encoding fares as problem-regularity decreases. in Proceedings of the 10th International Conference on Parallel Problem Solving From Nature (PPSN 2008) (Springer, Berlin, 2008), pp. 258–367

    Google Scholar 

  19. J. Clune, R.T. Pennock, C. Ofria. The sensitivity of HyperNEAT to different geometric representations of a problem. in Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2009) (ACM Press, New York, NY, USA, 2009)

    Google Scholar 

  20. J. Clune, K.O. Stanley, R.T. Pennock, C. Ofria, On the performance of indirect encoding across the continuum of regularity. IEEE Trans. Evol. Comput. 15(3), 346–367 (2011)

    Article  Google Scholar 

  21. J. Clune, K.O. Stanley, R.T. Pennock, C. Ofria, On the performance of indirect encoding across the continuum of regularity. IEEE Trans. Evol. Comput. 15(3), 346–367 (2011)

    Article  Google Scholar 

  22. O.J. Coleman et al., Evolving neural networks for visual processing. Ph.D. thesis, BS Thesis. The University of New South Wales, 2010

    Google Scholar 

  23. D.B. D’Ambrosio, S. Goodell, J. Lehman, S. Risi, K.O. Stanley, Multirobot Behavior Synchronization Through Direct Neural Network Communication (Springer, New York, 2012)

    Google Scholar 

  24. D.B. D’Ambrosio, J. Lehman, S. Risi, K.O. Stanley, Evolving policy geometry for scalable multiagent learning. in Proceedings of the Ninth International Conference on Autonomous Agents and Multiagent Systems (AAMAS-2010) (International Foundation for Autonomous Agents and Multiagent System, 2010), pp. 731–738

    Google Scholar 

  25. D.B. D’Ambrosio, J. Lehman, S. Risi, K.O. Stanley, Task switching in multiagent learning through indirect encoding. in Proceedings of the International Conference on Intelligent Robots and Systems (IROS 2011) (IEEE, Piscataway, NJ, 2011)

    Google Scholar 

  26. D.B. D’Ambrosio, K.O. Stanley, A novel generative encoding for exploiting neural network sensor and output geometry. in Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2007) (ACM Press, New York, NY, 2007)

    Google Scholar 

  27. D.B. D’Ambrosio, K.O. Stanley, Generative encoding for multiagent learning. in Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2008) (ACM Press, New York, NY, 2008)

    Google Scholar 

  28. F. Dellaert, Toward a biologically defensible model of development. Master’s thesis, Case Western Reserve University, Clevekand, OH, 1995

    Google Scholar 

  29. P. Deloukas, G.D. Schuler, G. Gyapay, E.M. Beasley, C. Soderlund, P. Rodriguez-Tome, L. Hui, T.C. Matise, K.B. McKusick, J.S. Beckmann, S. Bentolila, M. Bihoreau, B.B. Birren, J. Browne, A. Butler, A.B. Castle, N. Chiannilkulchai, C. Clee, P.J. Day, A. Dehejia, T. Dibling, N. Drouot, S. Duprat, C. Fizames, D.R. Bentley, A physical map of 30,000 human genes. Science 282(5389), 744–746 (1998)

    Article  Google Scholar 

  30. J. Drchal, O. Kapra, J. Koutnik, M. Snorek, Combining multiple inputs in HyperNEAT mobile agent controller. in 19th International Conference on Artificial Neural Networks (ICANN 2009) (Berlin, Springer, 2009), pp. 775–783

    Google Scholar 

  31. J. Drchal, J. Koutnik, M. Snorek, HyperNEAT controlled robots learn to drive on roads in simulated environment. in Proceedings of the IEEE Congress on Evolutionary Computation (CEC-2009) (IEEE Press, Piscataway, NJ, USA, 2009)

    Google Scholar 

  32. P. Eggenberger, Evolving Morphologies of Simulated 3D Organisms Based on Differential Gene Expression (MIT Press, Boston, 1997), pp. 205–213

    Google Scholar 

  33. D. Floreano, P. Dürr, C. Mattiussi, Neuroevolution: from architectures to learning. Evol. Intell. 1, 47–62 (2008)

    Article  Google Scholar 

  34. D. Floreano, J. Urzelai, Evolutionary robots with on-line self-organization and behavioral fitness. Neural Netw. 13, 431–4434 (2000)

    Article  Google Scholar 

  35. J. Gauci, K.O. Stanley, Generating large-scale neural networks through discovering geometric regularities. in Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2007) (ACM Press, New York, NY, 2007)

    Google Scholar 

  36. J. Gauci, K.O. Stanley, Autonomous evolution of topographic regularities in artificial neural networks. Neural Comput. 22(7), 1860–1898 (2010)

    Article  MATH  Google Scholar 

  37. J. Gauci, K.O. Stanley, Indirect encoding of neural networks for scalable go. in Proceedings of the 11th International Conference on Parallel Problem Solving From Nature (PPSN-2010) (Springer, 2011), pp. 354–363

    Google Scholar 

  38. C.D. Gilbert, T.N. Wiesel, Receptive field dynamics in adult primary visual cortex. Nature 356, 150–152 (1992)

    Google Scholar 

  39. F. Gomez, R. Miikkulainen, Incremental evolution of complex general behavior. Adapt. Behav. 5, 317–342 (1997)

    Article  Google Scholar 

  40. F. Gomez, R. Miikkulainen, Solving non-Markovian control tasks with neuroevolution (1999), pp. 1356–1361

    Google Scholar 

  41. G.J. Goodhill, M.A. Carreira-Perpinn, Cortical Columns, in Encyclopedia of Cognitive Science, volume 1, ed. by L. Nadel (MacMillan Publishers Ltd., London, 2002), pp. 845–851

    Google Scholar 

  42. F. Gruau, D. Whitley, L. Pyeatt, in A Comparison Between Cellular Encoding and Direct Encoding for Genetic Neural Networks, ed. by R. John Koza, D.E. Goldberg, D.B. Fogel, R.L. Riolo. Genetic Programming 1996: Proceedings of the First Annual Conference (MIT Press, 1996), pp. 81–89

    Google Scholar 

  43. E. Haasdijk, A.A. Rusu, A.E. Eiben, HyperNEAT for locomotion control in modular robots. in Proceedings of the 9th International Conference on Evolvable Systems (ICES 2010) (2010)

    Google Scholar 

  44. I. Harvey, The artificial evolution of adaptive behavior. Ph.D. thesis, School of Cognitive and Computing Sciences, University of Sussex, Sussex, 1993

    Google Scholar 

  45. E. Hastings, R. Guha, K.O. Stanley, Evolving content in the galactic arms race video game. in Proceedings of the IEEE Symposium on Computational Intelligence and Games (CIG-09) (IEEE Press, Piscataway, NJ, 2009)

    Google Scholar 

  46. E.J. Hastings, R.K. Guha, K.O. Stanley, Automatic content generation in the galactic arms race video game. IEEE Trans. Comput. Intell. AI Games 1(4), 245–263 (2010)

    Article  Google Scholar 

  47. J.D. Hiller, H. Lipson, Evolving amorphous robots. in Proceedings of the Twelfth International Conference on Artificial Life (ALIFE XII) (2010)

    Google Scholar 

  48. A.K. Hoover, Michael P. Rosario, K.O. Stanley, in Scaffolding for Interactively Evolving Novel Drum Tracks for Existing Songs, ed. by M. Giacobini. Proceedings of the Sixth European Workshop on Evolutionary and Biologically Inspired Music, Sound, Art and Design (EvoMUSART 2008) (Springer, March 2008), pp. 412–422

    Google Scholar 

  49. A.K. Hoover, K.O. Stanley, Exploiting functional relationships in musical composition. Connect. Sci. Spec. Issue Music Brain Cogn. 21(2 and 3), 227–251 (2009)

    Google Scholar 

  50. G.S. Hornby, J.B. Pollack, Creating high-level components with a generative representation for body-brain evolution. Artif. Life 8(3), 223–246 (2002)

    Google Scholar 

  51. D.H. Hubel, T.N. Wiesel, Receptive fields and functional architecture in two nonstriate visual areas (18 and 19) of the cat. J. Neurophysiol. 28, 229–289 (1965)

    Google Scholar 

  52. W. Jaskowski, K. Krawiec, B. Wieloch, Neurohunter-an entry for the balanced diet contest (2008)

    Google Scholar 

  53. E.R. Kandel, J.H. Schwartz, T.M. Jessell, Principles of Neural Science, 3rd edn. (Elsevier, New York, 1991)

    Google Scholar 

  54. N. Kashtan, U. Alon, Spontaneous evolution of modularity and network motifs. Proc. Nat. Acad. Sci. U.S.A. 102(39), 13773 (2005)

    Article  Google Scholar 

  55. D.B. Knoester, H.J. Goldsby, P.K. McKinley, Neuroevolution of mobile ad hoc networks. in Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation (ACM, 2010), pp. 603–610

    Google Scholar 

  56. N. Kohl, K.O. Stanley, R. Miikkulainen, M. Samples, R. Sherony, Evolving a real-world vehicle warning system. in Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2006) (July 2006), pp. 1681–1688

    Google Scholar 

  57. J. Lehman, S. Risi, D.B. D’Ambrosio, K.O. Stanley, Rewarding Reactivity to Evolve Robust Controllers Without Multiple Trials or Noise (MIT Press, Cambridge, 2012)

    Google Scholar 

  58. J. Lehman, K.O. Stanley, Abandoning objectives: evolution through the search for novelty alone. Evol. Comput. 19(2), 189–223 (2011)

    Article  Google Scholar 

  59. A. Liapis, G.N. Yannakakis, J. Togelius, Optimizing visual properties of game content through neuroevolution. in Seventh Artificial Intelligence and Interactive Digital Entertainment Conference (2011)

    Google Scholar 

  60. A. Lindenmayer, Adding Continuous Components to L-Systems, in Lecture Notes in Computer Science 15, ed. by G. Rozenberg, A. Salomaa (Springer, Heidelberg, 1974), pp. 53–68

    Google Scholar 

  61. J. Lowell, S. Grabkovsky, K. Birger, Comparison of NEAT and HyperNEAT performance on a strategic decision-making problem. in Fifth International Conference on Genetic and Evolutionary Computing (ICGEC) 2011 (IEEE, 2011), pp. 102–105

    Google Scholar 

  62. W. Maass, C.M. Bishop, Pulsed Neural Networks (The MIT Press, Cambridge, 2001)

    Google Scholar 

  63. A.P. Martin, Increasing genomic complexity by gene duplication and the origin of vertebrates. Am. Nat. 154(2), 111–128 (1999)

    Article  Google Scholar 

  64. J.F. Miller, Evolving a self-repairing, self-regulating, French flag organism. in Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2004) (Springer, Berlin, 2004)

    Google Scholar 

  65. R.A. Raff, The Shape of Life: Genes, Development, and the Evolution of Animal Form (The University of Chicago Press, Chicago, 1996)

    Google Scholar 

  66. S. Risi, K.O. Stanley, Indirectly encoding neural plasticity as a pattern of local rules. in Proceedings of the 11th International Conference on Simulation of Adaptive Behavior (SAB2010) (Springer, Berlin, 2010)

    Google Scholar 

  67. S. Risi, K.O. Stanley, Enhancing ES-HyperNEAT to evolve more complex regular neural networks. in GECCO ’11: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation (2011)

    Google Scholar 

  68. S. Risi, K.O. Stanley, An enhanced hypercube-based encoding for evolving the placement, density and connectivity of neurons. Artif. Life 18(4), 331–363 (2012)

    Google Scholar 

  69. S. Risi, K.O. Stanley, A Unified Approach to Evolving Plasticity and Neural Geometry (IEEE, Piscataway, 2012)

    Google Scholar 

  70. S. Risi, S.D. Vanderbleek, C.E. Hughes, K.O. Stanley, How novelty search escapes the deceptive trap of learning to learn. in Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2009) (ACM Press, New York, NY, USA, 2009)

    Google Scholar 

  71. N. Saravanan, D.B. Fogel, Evolving neural control systems. IEEE Expert 10(3), 23–27 (1995)

    Google Scholar 

  72. J. Secretan, N. Beato, D.B. D’Ambrosio, A. Rodriguez, A. Campbell, J.T. Folsom-Kovarik, K.O. Stanley, Picbreeder: a case study in collaborative evolutionary exploration of design space. Evol. Comput. 19(3), 345–371 (2011)

    Article  Google Scholar 

  73. J. Secretan, N. Beato, D.B. D’Ambrosio, A. Rodriguez, A. Campbell, K.O. Stanley, Picbreeder: evolving pictures collaboratively online. in CHI ’08: Proceedings of the Twenty-Sixth Annual SIGCHI Conference on Human Factors in Computing Systems (ACM, New York, NY, USA, 2008), pp. 1759–1768

    Google Scholar 

  74. K. Sims, Evolving 3D Morphology and Behavior by Competition (MIT Press, Cambridge, MA, 1994), pp. 28–39

    Google Scholar 

  75. K.O. Stanley, Exploiting regularity without development. in Proceedings of the AAAI Fall Symposium on Developmental Systems (AAAI Press, Menlo Park, CA, 2006)

    Google Scholar 

  76. K.O. Stanley, Compositional pattern producing networks: a novel abstraction of development. Genet. Program. Evolvable Mach. Spec. Issue Dev. Syst. 8(2), 131–162 (2007)

    Article  Google Scholar 

  77. K.O. Stanley, B.D. Bryant, R. Miikkulainen, Evolving neural network agents in the NERO video game. in Proceedings of the IEEE 2005 Symposium on Computational Intelligence and Games (2005)

    Google Scholar 

  78. K.O. Stanley, B.D. Bryant, R. Miikkulainen, Real-time neuroevolution in the NERO video game. IEEE Trans. Evol. Comput. Spec. Issue Evol. Comput. Games 9(6), 653–668 (2005)

    Google Scholar 

  79. K.O. Stanley, D.B. D’Ambrosio, J. Gauci, A hypercube-based indirect encoding for evolving large-scale neural networks. Artif. Life 15(2), 185–212 (2009)

    Article  Google Scholar 

  80. K.O. Stanley, N. Kohl, R. Miikkulainen, Neuroevolution of an automobile crash warning system. in Proceedings of the Genetic and Evolutionary Computation Conference (2005)

    Google Scholar 

  81. K.O. Stanley, R. Miikkulainen, Efficient reinforcement learning through evolving neural network topologies. in Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2002) (2002)

    Google Scholar 

  82. K.O. Stanley, R. Miikkulainen, Evolving neural networks through augmenting topologies. Evol. Comput. 10, 99–127 (2002)

    Article  Google Scholar 

  83. K.O. Stanley, R. Miikkulainen, A taxonomy for artificial embryogeny. Artif. Life 9(2), 93–130 (2003)

    Article  Google Scholar 

  84. K.O. Stanley, R. Miikkulainen, Competitive coevolution through evolutionary complexification. J. Artif. Intell. Res. 21, 63–100 (2004)

    Google Scholar 

  85. K.O. Stanley, R. Miikkulainen, Evolving a roving eye for go. in Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2004) (Springer, Berlin, 2004)

    Google Scholar 

  86. M.E. Taylor, S. Whiteson, P. Stone, Comparing evolutionary and temporal difference methods in a reinforcement learning domain. in GECCO 2006: Proceedings of the Genetic and Evolutionary Computation Conference (July 2006), pp. 1321–1328

    Google Scholar 

  87. L. Trujillo, G. Olague, E. Lutton, F.F. de Vega, Discovering Several Robot Behaviors, through Speciation. Applications of Evolutionary Computing: Evoworkshops, Evocomnet. Evofin, Evohot, Evoiasp, Evomusart, Evonum, Evostoc, and Evotranslog (2008), p. 164

    Google Scholar 

  88. P. Verbancsics, K.O. Stanley, Evolving static representations for task transfer. J. Mach. Learn. Res. (JMLR) 11, 1737–1769 (2010)

    MATH  MathSciNet  Google Scholar 

  89. P. Verbancsics, K.O. Stanley, Task transfer through indirect encoding. in Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2010) (ACM Press, New York, NY, 2010)

    Google Scholar 

  90. P. Verbancsics, K.O. Stanley, Constraining connectivity to encourage modularity in HyperNEAT. in Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation (ACM, 2011), pp. 1483–1490

    Google Scholar 

  91. J.D. Watson, N.H. Hopkins, J.W. Roberts, J.A. Steitz, A.M. Weiner, Molecular Biology of the Gene, 4th edn. (The Benjamin Cummings Publishing Company Inc, Menlo Park, 1987)

    Google Scholar 

  92. D.J. Willshaw, C. Von Der Malsburg, How patterned neural connections can be set up by self-organization. Proc. R. Soc. Lond. B Biol. Sci. 194(1117), 431–445 (1976)

    Article  Google Scholar 

  93. D.H. Wolpert, W. Macready, No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1, 67–82 (1997)

    Article  Google Scholar 

  94. B. Woolley, K.O. Stanley, Evolving a single scalable controller for an octopus arm with a variable number of segments. in Proceedings of the 11th International Conference on Parallel Problem Solving From Nature (PPSN-2010) (Springer, 2011), pp. 270–279

    Google Scholar 

  95. B.G. Woolley, K.O. Stanley, On the deleterious effects of a priori objectives on evolution and representation. in GECCO ’11: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation (2011)

    Google Scholar 

  96. X. Yao, Evolving artificial neural networks. Proc. IEEE 87(9), 1423–1447 (1999)

    Article  Google Scholar 

  97. J. Yosinski, J. Clune, D. Hidalgo, S. Nguyen, J.C. Zagal, H. Lipson, Generating gaits for physical quadruped robots: evolved neural networks vs. local parameterized search. in Proceedings of the 13th Annual Conference Companion on Genetic and Evolutionary Computation (ACM, 2011), pp. 31–32

    Google Scholar 

  98. M.J. Zigmond, F.E. Bloom, S.C. Landis, J.L. Roberts, L.R. Squire (eds.), Fundamental Neuroscience (Academic Press, London, 1999)

    Google Scholar 

Download references

Acknowledgments

Much of the work on HyperNEAT at the Evolutionary Complexity Research Group at the University of Central Florida was supported by DARPA through its Computer Science Study Group program, including Phases 1, 2, and 3 (grants HR0011- 08-1-0020, HR0011-09-1-0045 and N11AP20003). This chapter does not necessarily reflect the position or policy of the government, and no official endorsement should be inferred.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David B. D’Ambrosio .

Editor information

Editors and Affiliations

Appendix: Implementations

Appendix: Implementations

Many researchers mentioned above have made their implementations of HyperNEAT available:

  • HyperSharpNEAT by David D’Ambrosio is an extension of Colin Green’s SharpNEAT1, which is written in C#. HyperSharpNEAT contains an implementation of multiagent HyperNEAT and has been augmented by Joel Lehman and Sebastian Risi to contain the LEO, ES, and adaptive HyperNEAT extensions.

  • SharpNEAT2 by Colin Green, which includes a different version of HyperNEAT, is also written in C# and contains several example experiments as well as tutorials on making new ones.

  • Keepaway HyperNEAT C# by Philip Verbancsics is distributed with a C# implementation of the Robocup simulator.

  • Another HyperNEAT Implementation (ANHI) by Oliver Coleman extends the Java-based ANJI implementation of NEAT (itself by Derek James and Philip Tucker). AHNI includes several visual processing experiments.

  • HyperNEAT C++ by Jason Gauci comes with visual discrimination and checkers experiments.

Links to all these software packages can be found at http://eplex.cs.ucf.edu/hyperNEATpage/.

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

D’Ambrosio, D.B., Gauci, J., Stanley, K.O. (2014). HyperNEAT: The First Five Years. In: Kowaliw, T., Bredeche, N., Doursat, R. (eds) Growing Adaptive Machines. Studies in Computational Intelligence, vol 557. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55337-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55337-0_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-55336-3

  • Online ISBN: 978-3-642-55337-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics