Advertisement

ReSDaP: A Real-Time Data Provision System Architecture for Sensor Webs

  • Huan Li
  • Hong Fan
  • Huayi Wu
  • Hao Feng
  • Pengpeng Li
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8470)

Abstract

More and more sensors for environment surveillance are deployed around the world given the rapid development of sensor networks. Since sensor data is produced continually for months or even years in many places, a huge amount of data is stored all over the world. This study proposes ReSDaP, an architecture to bridge sensor networks and spatio-temporal databases by continuously creating and running Provision Items (PIs). A PI is responsible for the continual linkage-processing-storage (LPS) of the data stream produced by a sensor, and acts as a pipeline for nonstop transmission of data into spatio-temporal databases at fixed time intervals. Actual data provisions from Wuhan meteorological sensors are used as a case study of ReSDaP. This implementation demonstrates that ReSDaP has good scalability and increases the availability of sensor web data.

Keywords

Sensor Web Service Spatio-temporal data Real-time provision Data stream pipeline System Architecture 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Broering, A., Echterhoff, J., Jirka, S., Simonis, I., Everding, T., Stasch, C., Liang, S., Lemmens, R.: New Generation Sensor Web Enablement. Sensors 11, 2652–2699 (2011)CrossRefGoogle Scholar
  2. 2.
    Chen, N., Di, L., Yu, G., Min, M.: A flexible geospatial sensor observation service for diverse sensor data based on Web service. ISPRS Journal of Photogrammetry and Remote Sensing 64, 234–242 (2009)CrossRefGoogle Scholar
  3. 3.
    Di, L.: Geospatial sensor web and self-adaptive Earth predictive systems (SEPS). In: Proceedings of the Earth Science Technology Office (ESTO)/Advanced Information System Technology (AIST) Sensor Web Principal Investigator (PI) Meeting, San Diego, USA, pp. 1–4 (2007)Google Scholar
  4. 4.
    Lai, X., Liu, Q., Wei, X., Wang, W., Zhou, G., Han, G.: A survey of body sensor networks. Sensors 13, 5406–5447 (2013)CrossRefGoogle Scholar
  5. 5.
    Ding, Z., Gao, X.: A Database Cluster System Framework for Managing Massive Sensor Sampling Data in the Internet of Things. Chinese Journal of Computers 35, 1175–1191 (2012) (in Chinese)Google Scholar
  6. 6.
    Lee, K.B., Reichardt, M.E.: Open standards for homeland security sensor networks. IEEE Instrumentation & Measurement Magazine 8, 14–21 (2005)CrossRefGoogle Scholar
  7. 7.
    Liu, Y., Gong, J., Guo, W.: Resource locating and selection for spatial image streaming on P2P network. Acta Geodaetica et Cartographica Sinica 39, 383–389 (2010)Google Scholar
  8. 8.
    Diallo, O., Rodrigues, J.J.P.C., Sene, M.: Real-time data management on wireless sensor networks: A survey. Journal of Network and Computer Applications 35, 1013–1021 (2012)CrossRefGoogle Scholar
  9. 9.
    Wang, N., Shen, S., Shen, Z., Zhao, M.: A germplasm resources data collection and management geographic information system based heavy weight network. Measurement, 1734–1739 (2013)Google Scholar
  10. 10.
    Moro, G., Monti, G.: W-Grid: A scalable and efficient self-organizing infrastructure for multi-dimensional data management, querying and routing in wireless data-centric sensor networks. Journal of Network and Computer Applications 1218–1234 (2012)Google Scholar
  11. 11.
    Cristescu, R., Vetterli, M.: On the optimal density for real-time data gathering of spatio-temporal processes in sensor networks. In: Proceedings of the 4th International Symposium on Information Processing in Sensor Networks, p. 21. IEEE Press (2005)Google Scholar
  12. 12.
    Shi, H.Y., Wang, W.L., Kwok, N.M., Chen, S.Y.: Game theory for Wireless Sensor Networks: a survey. Sensors 12, 9055–9097 (2012)CrossRefGoogle Scholar
  13. 13.
    Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: A survey on sensor networks. IEEE Communications Magazine 40, 102–114 (2002)CrossRefGoogle Scholar
  14. 14.
    Pokorny, J.: Database architectures: Current trends and their relationships to environmental data management. Environmental Modelling & Software, 1579–1586 (2006)Google Scholar
  15. 15.
    MongoDB, Inc., http://www.mongodb.com/
  16. 16.
    Apache Software Foundation, http://couchdb.apache.org/
  17. 17.
    TriAGENS GmbH, http://www.arangodb.org/
  18. 18.
    Chen, J., Cao, J., Chen, Q.: ISHSN: An integration system for heterogenous sensor networks. Journal of Computer Applications, 1191–1193+1207 (2013) (in Chinese)Google Scholar
  19. 19.
    Chen, Q.-K., Lv, X.-M., Hao, J.-T., Zhang, Z., Zhuang, S.-L.: ChukwaX: A Heterogeneous Data Access System for Internet of Things. Computer Engineering, 12–15 (2012) (in Chinese)Google Scholar
  20. 20.
    Golab, L., Özsu, M.T.: Issues in data stream management. ACM Sigmod Record 32, 5–14 (2003)CrossRefGoogle Scholar
  21. 21.
    National Telecommunications & Information Administration: Data stream, http://www.its.bldrdoc.gov/fs-1037/dir-010/_1451.htm

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Huan Li
    • 1
  • Hong Fan
    • 1
  • Huayi Wu
    • 1
  • Hao Feng
    • 1
  • Pengpeng Li
    • 1
  1. 1.LIESMARSWuhan UniversityWuhanPR China

Personalised recommendations