Advertisement

Trajectory Aggregation for a Routable Map

  • Sebastian Müller
  • Paras Mehta
  • Agnès Voisard
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8470)

Abstract

In this paper, we compare different approaches to merge trajectory data for later use in a map construction process. Merging trajectory data reduces storage space and can be of great help as far as data privacy is concerned. We consider different distance measures and different merge strategies, taking into account the cost of calculation, the connectivity of the results, and the storage space of the result. Finally, we give a hint on a possible information loss for each approach.

Keywords

Trajectory Summarization Trajectory Data Subtrajectories Movement Patterns GPS 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Canalys: Sony and HTC overtake RIM and Nokia in smart phones (2012), http://www.canalys.com/newsroom/sony-and-htc-overtake-rim-and-nokia-smart-phones
  2. 2.
    Association for Computing Machinery: ACM digital library (2013), https://dl.acm.org/
  3. 3.
    Yuan, J., Zheng, Y., Zhang, C., Xie, W., Xie, X., Sun, G., Huang, Y.: T-drive: driving directions based on taxi trajectories. In: Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems, GIS 2010, pp. 99–108. ACM, New York (2010)Google Scholar
  4. 4.
    Evans, M.R., Oliver, D., Shekhar, S., Harvey, F.: Summarizing trajectories into k-primary corridors: a summary of results. In: Proceedings of the 20th International Conference on Advances in Geographic Information Systems, SIGSPATIAL 2012, pp. 454–457. ACM, New York (2012)Google Scholar
  5. 5.
    Andrienko, G., Andrienko, N., Giannotti, F., Monreale, A., Pedreschi, D.: Movement data anonymity through generalization. In: Proceedings of the 2nd SIGSPATIAL ACM GIS 2009 International Workshop on Security and Privacy in GIS and LBS, SPRINGL 2009, pp. 27–31. ACM, New York (2009)CrossRefGoogle Scholar
  6. 6.
    Goel, P., Kulik, L., Kotagiri, R.: Privacy aware trajectory determination in road traffic networks. In: Proceedings of the 20th International Conference on Advances in Geographic Information Systems, SIGSPATIAL 2012, pp. 406–409. ACM, New York (2012)Google Scholar
  7. 7.
    Alt, H., Godau, M.: Computing the Fréchet distance between two polygonal curves. Int. J. Comput. Geometry Appl. 5, 75–91 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Buchin, K., Buchin, M., Wang, Y.: Exact algorithms for partial curve matching via the Fréchet distance. In: Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2009, pp. 645–654. Society for Industrial and Applied Mathematics, Philadelphia (2009)CrossRefGoogle Scholar
  9. 9.
    Rockafellar, R.: Variational analysis. Springer, Berlin (1998)CrossRefzbMATHGoogle Scholar
  10. 10.
    Devogele, T.: A new merging process for data integration based on the discrete Fréchet distance. In: Richardson, D.E., Van Oosterom, P., van Oosterom, P.J.M. (eds.) Advances in Spatial Data Handling: 10th International Symposium on Spatial Data Handling, Ottawa, Canada, pp. 167–181 (2002)Google Scholar
  11. 11.
    Zhang, L., Sester, M.: Incremental data acquisition from GPS-traces. In: Geospatial Data and Geovisualization: Environment, Security, and Society; Special Joint Symposium of ISPRS Commission IV and AutoCarto 2010 in Conjunction with ASPRS/CaGIS 2010 Special Conference. ASPRS/CaGIS 2010 (2010)Google Scholar
  12. 12.
    Cao, L., Krumm, J.: From GPS traces to a routable road map. In: Proceedings of the 17th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, GIS 2009, pp. 3–12. ACM, New York (2009)Google Scholar
  13. 13.
    Buchin, K., Buchin, M., Gudmundsson, J., Löffler, M., Luo, J.: Detecting commuting patterns by clustering subtrajectories. In: Hong, S.-H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 644–655. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  14. 14.
    Lee, J.G., Han, J., Whang, K.Y.: Trajectory clustering: a partition-and-group framework. In: Proceedings of the 2007 ACM SIGMOD International Conference on Management of Data, SIGMOD 2007, pp. 593–604. ACM, New York (2007)CrossRefGoogle Scholar
  15. 15.
    Zhu, H., Luo, J., Yin, H., Zhou, X., Huang, J.Z., Zhan, F.B.: Mining trajectory corridors using Fréchet distance and meshing grids. In: Zaki, M.J., Yu, J.X., Ravindran, B., Pudi, V. (eds.) PAKDD 2010, Part I. LNCS, vol. 6118, pp. 228–237. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  16. 16.
    Gudmundsson, J., Valladares, N.: A GPU approach to subtrajectory clustering using the Fréchet distance. In: Proceedings of the 20th International Conference on Advances in Geographic Information Systems, SIGSPATIAL 2012, pp. 259–268. ACM, New York (2012)Google Scholar
  17. 17.
    Dodge, S., Laube, P., Weibel, R.: Movement similarity assessment using symbolic representation of trajectories. Int. J. Geogr. Inf. Sci. 26(9), 1563–1588 (2012)CrossRefGoogle Scholar
  18. 18.
    van Kreveld, M., Wiratma, L.: Median trajectories using well-visited regions and shortest paths. In: Proceedings of the 19th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, GIS 2011, pp. 241–250. ACM, New York (2011)Google Scholar
  19. 19.
    Scott, J.: JCoord (2013), http://www.jstott.me.uk/jcoord/
  20. 20.
    Foster, D.: GPX: the GPS exchange format (2013), http://www.topografix.com/gpx.asp
  21. 21.
    OpenStreetMap Community: OSM XML - OpenStreetMap wiki (2013), https://wiki.openstreetmap.org/wiki/OSM_XML
  22. 22.
    Ramer, U.: An iterative procedure for the polygonal approximation of plane curves. Computer Graphics and Image Processing 1(3), 244–256 (1972)CrossRefGoogle Scholar
  23. 23.
    Douglas, D.H., Peucker, T.K.: Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. Cartographica: The International Journal for Geographic Information and Geovisualization 10(2), 112–122 (1973)CrossRefGoogle Scholar
  24. 24.
    Mitlmeier, J.: Generierung von Straßengraphen aus aggregierten GPS-Spuren. Master thesis, Freie Universität Berlin (2012)Google Scholar
  25. 25.
    OpenStreetMap Community: Public GPS traces, http://www.openstreetmap.org/traces (2013)
  26. 26.
    Fischer, J.: GPS track aggregation with use of Fréchet distance. Bachelor thesis, Freie Universität Berlin (2012)Google Scholar
  27. 27.
    Müller, S.: Agg2graph (2013), http://sebastian-fu.github.com/agg2graph/
  28. 28.
    Hastie, T., Tibshirani, R., Friedman, J.H.: The elements of statistical learning: data mining, inference, and prediction: with 200 full-color illustrations. Springer, New York (2001)Google Scholar
  29. 29.
    Hastie, T.J., Tibshirani, R.J.: Generalized additive models. Chapman & Hall, London (1990)zbMATHGoogle Scholar
  30. 30.
    Welch, G., Bishop, G.: An introduction to the Kalman filter. Technical report, Chapel Hill, NC, USA (1995)Google Scholar
  31. 31.
    Chazal, F., Chen, D., Guibas, L., Jiang, X., Sommer, C.: Data-driven trajectory smoothing. In: Proceedings of the 19th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, GIS 2011, pp. 251–260. ACM, New York (2011)Google Scholar
  32. 32.
    Buchin, M., Driemel, A., van Kreveld, M., Sacristán, V.: An algorithmic framework for segmenting trajectories based on spatio-temporal criteria. In: Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems, GIS 2010, pp. 202–211. ACM, New York (2010)Google Scholar
  33. 33.
    Xie, K., Deng, K., Zhou, X.: From trajectories to activities: a spatio-temporal join approach. In: Proceedings of the 2009 International Workshop on Location Based Social Networks, LBSN 2009, pp. 25–32. ACM, New York (2009)CrossRefGoogle Scholar
  34. 34.
    Sweeney, L.: k-anonymity: a model for protecting privacy. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 10(5), 557–570 (2002)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Sebastian Müller
    • 1
  • Paras Mehta
    • 1
  • Agnès Voisard
    • 1
    • 2
  1. 1.Institut für InformatikFreie Universität BerlinBerlinGermany
  2. 2.Fraunhofer FOKUSGermany

Personalised recommendations