Advertisement

Feathered Tiles with Uniform Payload Size for Progressive Transmission of Vector Data

  • Andrew Dufilie
  • Georges Grinstein
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8470)

Abstract

We introduce Feathered Tiles, a novel vector data tiling method for web mapping. This method eliminates redundant data transfer, greatly reduces the amount of excess data transmitted for progressive refinements, and supports smooth zooming operations with on-the-fly generalization. For a given set of geometries, the effective area of each vertex is computed and stored as a third coordinate, along with the bounds of the effective area. The results are partitioned in three dimensions into tiles of a desired byte length. Each tile is stored along with the 3-dimensional bounds encapsulating the effective area of all vertices contained within. Individual tiles can then be retrieved on demand with 3-dimensional queries to reproduce a simplified set of geometries for a given scale and viewport. The key to reducing excess data transfer lies in associating tiles with the effective bounds of individual vertices rather than the bounds of the geometries that contain the vertices. This tiling method is implemented in the open source visualization framework, Weave.

Keywords

Vector Data Vector Tiling Progressive Transmission Web Mapping Generalization Data Structures Open Source 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Antoniou, V., Morley, J., Haklay, M(M.): Tiled vectors: A method for vector transmission over the web. In: Carswell, J.D., Fotheringham, A.S., McArdle, G. (eds.) W2GIS 2009. LNCS, vol. 5886, pp. 56–71. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    The Astrophysical Research Consortium: Tiling and Adaptive Tiling. The Sloan Digital Sky Survey Project Book. Princeton University (1993), http://www.astro.princeton.edu/PBOOK/tiling/tiling.htm
  3. 3.
    Bentley, J.L.: Multidimensional binary search trees used for associative searching. Communications of the ACM 18(9), 509–517 (1975)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Bentley, J.L., Friedman, J.H.: Data Structures for Range Searching. ACM Comput. Surv. 11(4), 397–409 (1979)CrossRefGoogle Scholar
  5. 5.
    Bertolotto, M., Egenhofer, M.J.: Progressive transmission of vector map data over the world wide web. GeoInformatica 5(4), 345–373 (2001)CrossRefzbMATHGoogle Scholar
  6. 6.
    Buzer, L.: Optimal simplification of polygonal chains for subpixel-accurate rendering. Computational Geometry 42(1), 45–59 (2009), http://dx.doi.org/10.1016/j.comgeo.2008.03.002 CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Campin, B.: Use of vector and raster tiles for middle-size Scalable Vector Graphics mapping applications. In: SVGOpen 2005 (2005), http://www.svgopen.org/2005/papers/VectorAndRasterTilesForMappingApplications/
  8. 8.
    Corcoran, P., Mooney, P., Bertolotto, M., Winstanley, A.: View- and scale-based progressive transmission of vector data. In: Murgante, B., Gervasi, O., Iglesias, A., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2011, Part II. LNCS, vol. 6783, pp. 51–62. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. 9.
    Corcoran, P., Mooney, P., Bertolotto, M.: Line simplification in the presence of non-planar topological relationships. In: Bridging the Geographic Information Sciences, pp. 25–42. Springer, Heidelberg (2012), doi: http://dx.doi.org/10.1007/978-3-642-29063-3_2
  10. 10.
    Costa, D.C., Teixeira, M.M., De Paiva, A.C., de Souza Baptista, C.: A service-oriented architecture for progressive transmission of maps. In: Proceedings of IX Brazilian Symposium on GeoInformatics, INPE 2007. GeoInfo, Campos do Jordão, Brazil, November 25-28, pp. 97–108 (2007)Google Scholar
  11. 11.
    Douglas, D.H., Peucker, T.K.: Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. Cartographica: The International Journal for Geographic Information and Geovisualization 10(2), 112–122 (1973)CrossRefGoogle Scholar
  12. 12.
    Dufilie, A., Fallon, J., Stickney, P., Grinstein, G.: Weave: A Web-based Architecture Supporting Asynchronous and Real-time Collaboration. In: Proceedings of the AVI Workshop on Supporting Asynchronous Collaboration in Visual Analytics Systems (2012)Google Scholar
  13. 13.
    Environmental Systems Research Institute, Inc.: Tiled processing of large datasets. ArcGIS Desktop 8.3 Help (2009), http://webhelp.esri.com/arcgisdesktop/9.3/index.cfm?TopicName=Tiled+processing+of+large+datasets
  14. 14.
    GeoJSON – JSON Geometry and Feature Description, http://geojson.org/
  15. 15.
  16. 16.
    Han, H., Tao, V., Wu, H.: Progressive vector data transmission. In: Proceedings of the 6th AGILE, Lyon, France, pp. 103–113 (2003)Google Scholar
  17. 17.
    Haunert, J.H., Dilo, A., van Oosterom, P.: Constrained set-up of the tGAP structure for progressive vector data transfer. Computers and Geosciences 35(11), 2191–2203 (2009)CrossRefGoogle Scholar
  18. 18.
    Langfeld, D., Kunze, R., Vornberger, O.: SVG Web Mapping. Four-dimensional visualization of time- and geobased data. In: SVGOpen 2008 (2008), http://www.svgopen.org/2008/papers/92-SVG_Web_Mapping/
  19. 19.
  20. 20.
    Meijers, M.: Cache-friendly progressive data streaming with variable-scale data structures. In: Proceedings of the ICA/ISPRS Workshop on Generalisation and Multiple Representation, Paris, France, June 30-July 1 (2011)Google Scholar
  21. 21.
    Meijers, M.: Simultaneous & topologically-safe line simplification for a variable-scale planar partition. In: Advancing Geoinformation Science for a Changing World, pp. 337–358. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  22. 22.
    Migurski, M.: TileStache Mailing List (July 19, 2011), https://groups.google.com/d/msg/tilestache/p7OotBbz5tE/clvzx0YAtUYJ
  23. 23.
    Migurski, M.: StackExchange answer (November 22, 2010), http://gis.stackexchange.com/questions/3712/create-vector-tiles-for-polymaps
  24. 24.
    Newman, W.M., Sproull, R.F.: Principles of interactive computer graphics, 124, 252. McGraw-Hill, Inc. (1979)Google Scholar
  25. 25.
    Nordan, R.P.V.: An Investigation of Potential Methods for Topology Preservation in Interactive Vector Tile Map Applications. Master Thesis. Norwegian University of Science and Technology (2012)Google Scholar
  26. 26.
    van Oosterom, P., Van Den Bos, J.: An object-oriented approach to the design of geographic information systems. Computers and Graphics 13(4), 409–418 (1989)CrossRefGoogle Scholar
  27. 27.
    van Oosterom, P.: Variable-scale topological data structures suitable for progressive data transfer: The GAP-face tree and GAP-edge forest. Cartography and Geographic Information Science 32(4), 331–346 (2005)CrossRefGoogle Scholar
  28. 28.
    Vector Tiles - OpenStreetMap Wiki, http://wiki.openstreetmap.org/wiki/Vector_tiles
  29. 29.
  30. 30.
    Ravnic, D.: Re: GisCloud showing tons of vectors features on Web Browser. OpenLayers-Users mailing list (September 23, 2011), http://lists.osgeo.org/pipermail/openlayers-users/2011-September/022351.html
  31. 31.
    Rosenberg, J.B.: Geographical data structures compared: A study of data structures supporting region queries. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 4(1), 53–67 (1985)CrossRefGoogle Scholar
  32. 32.
    Samet, H.: Foundations of Multidimensional and Metric Data Structures, pp. 317–329 (2006)Google Scholar
  33. 33.
  34. 34.
    Schmalstieg, D., Schaufler, G.: Smooth levels of detail. In: Virtual Reality Annual International Symposium, pp. 12–19. IEEE (March 1997)Google Scholar
  35. 35.
    Schmid, F., Janetzek, H., Wladysiak, M., Hu, B.: OpenScienceMap: open and free vector maps for low bandwidth applications. In: Proceedings of the 3rd ACM Symposium on Computing for Development. ACM, New York (January 2013)Google Scholar
  36. 36.
    Scalable Vector Graphics. Wikipedia entry, http://en.wikipedia.org/wiki/Scalable_Vector_Graphics
  37. 37.
  38. 38.
    TileStache documentation. TileStache.Vector, http://tilestache.org/doc/TileStache.Vector.html (accessed June 2013)
  39. 39.
    Visvalingam, M., Whyatt, J.D.: Line generalisation by repeated elimination of points. The Cartographic Journal 30(1), 46–51 (1993)CrossRefGoogle Scholar
  40. 40.
    Weave: Web-based Analysis and Visualization Environment, http://www.oicweave.org
  41. 41.
    Yang, B.S., Purves, R.S., Weibel, R.: Implementation of progressive transmission algorithms for vector map data in web-based visualization. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 34. Part XXX (2004)Google Scholar
  42. 42.
    Zhang, L., Zhang, L., Ren, Y., Guo, Z.: Transmission and visualization of large geographical maps. ISPRS Journal of Photogrammetry and Remote Sensing 66(1), 73–80 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Andrew Dufilie
    • 1
  • Georges Grinstein
    • 1
  1. 1.Institute for Visualization and Perception ResearchUniversity of Massachusetts LowellLowellUSA

Personalised recommendations