Advertisement

Using Cameras to Improve Wi-Fi Based Indoor Positioning

  • Laura Radaelli
  • Yael Moses
  • Christian S. Jensen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8470)

Abstract

Indoor positioning systems are increasingly being deployed to enable indoor navigation and other indoor location-based services. Systems based on Wi-Fi and video cameras rely on different technologies and techniques and have so far been developed independently by different research communities; we show that integrating information provided by a video system into a Wi-Fi based system increases its maintainability and avoid drops in accuracy over time. Specifically, we consider a Wi-Fi system that uses fingerprints measurements collected in the space for positioning. We improve the system’s room-level accuracy by means of automatic, video-driven collection of fingerprints. Our method is able to relate a Wi-Fi user to unidentified movements detected by cameras by exploiting the existing Wi-Fi system, thus generating fingerprints automatically. This use of video for fingerprint collection reduces the need for manual collection and allows online updating of fingerprints. Hence, increasing system accuracy. We report on an empirical study that shows that automatic fingerprinting induces only few false positives and yields a substantial accuracy improvement.

Keywords

Indoor Positioning Wi-Fi Fingerprinting Video Tracking 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barry, A., Fisher, B., Chang, M.L.: A long-duration study of user-trained 802.11 localization. In: Fuller, R., Koutsoukos, X.D. (eds.) MELT 2009. LNCS, vol. 5801, pp. 197–212. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Bell, S., Jung, W.R., Krishnakumar, V.: WiFi-based enhanced positioning systems: accuracy through mapping, calibration, and classification. In: Proc. ISA, pp. 3–9 (2010)Google Scholar
  3. 3.
    Breitenstein, M., Reichlin, F., Leibe, B., Koller-Meier, E., Van Gool, L.: Online multiperson tracking-by-detection from a single, uncalibrated camera. IEEE TPAMI 33(9), 1820–1833 (2011)CrossRefGoogle Scholar
  4. 4.
    Cristani, M., Farenzena, M., Bloisi, D., Murino, V.: Background Subtraction for Automated Multisensor Surveillance: A Comprehensive Review. EURASIP J. Adv. Signal Process. Article 43, 24 pages (2010)Google Scholar
  5. 5.
    Dörre, W.H.: Time-activity-patterns of some selected small groups as a basis for exposure estimation: A methodological study. J. Expo. Anal. Environ. Epidemiol. 7, 471–491 (1997)Google Scholar
  6. 6.
    Elgammal, A.: Background subtraction: Theory and practice. In: Wide Area Surveillance. Augmented Vision and Reality, vol. 6, pp. 1–21 (2014)Google Scholar
  7. 7.
    Gallagher, T., Li, B., Dempster, A., Rizos, C.: Database updating through user feedback in fingerprint-based Wi-Fi location systems. In: Proc. UPINLBS, pp. 1–8 (2010)Google Scholar
  8. 8.
    Hile, H., Borriello, G.: Positioning and orientation in indoor environments using camera phones. IEEE Computer Graphics and Applications 28(4), 32–39 (2008)CrossRefGoogle Scholar
  9. 9.
    Isasi, A., Rodriguez, S., Armentia, J.L.D., Villodas, A.: Location, tracking and identification with RFID and vision data fusion. In: Proc. RFID Sys. Tech., pp. 1–6 (2010)Google Scholar
  10. 10.
    Jensen, C.S., Li, K.-J., Winter, S.: ISA 2010 workshop report: the other 87%: A report on the second international workshop on indoor spatial awareness (San Jose, California - November 2, 2010). In: SIGSPATIAL Special 3(1), 10–12 (2011)Google Scholar
  11. 11.
    Kim, K.-H., Min, A.W., Shin, K.G.: Sybot: an adaptive and mobile spectrum survey system for WiFi networks. In: Proc. MOBICOM, pp. 293–304 (2010)Google Scholar
  12. 12.
    Kjærgaard, M.B.: Indoor location fingerprinting with heterogeneous clients. Pervasive and Mobile Computing 7(1), 31–43 (2011)CrossRefGoogle Scholar
  13. 13.
    Klepeis, N.E., Nelson, W.C., Ott, W.R., Robinson, J.P., Tsang, A.M., Switzer, P., Behar, J.V., Hern, S.C., Engelmann, W.H.: The national human activity pattern survey (NHAPS): A resource for assessing exposure to environmental pollutants. J. Expo. Anal. Environ. Epidemiol. 11(3), 231–252 (2001)CrossRefGoogle Scholar
  14. 14.
    Lacroix, T.E.: Indoor LBS market report (September 2013)Google Scholar
  15. 15.
    Liu, H., Darabi, H., Banerjee, P., Liu, J.: Survey of wireless indoor positioning techniques and systems. IEEE Trans. Syst., Man, Cybern., C 37(6), 1067–1080 (2007)CrossRefGoogle Scholar
  16. 16.
    Mautz, R.: Indoor Positioning Technologies. Geodätisch-geophysikalische Arbeiten in der Schweiz (2012)Google Scholar
  17. 17.
    Morimitsu, H., Pimentel, R., Hashimoto, M., Cesar, R., Hirata, R.: Wi-Fi and keygraphs for localization with cell phones. In: Proc. ICCV Workshops, pp. 92–99 (2011)Google Scholar
  18. 18.
    Nick, T., Cordes, S., Gotze, J., John, W.: Camera-assisted localization of passive RFID labels. In: Proc. IPIN, pp. 1–8 (2012)Google Scholar
  19. 19.
    Park, J.-G., Charrow, B., Curtis, D., Battat, J., Minkov, E., Hicks, J., Teller, S., Ledlie, J.: Growing an organic indoor location system. In: Proc. MobiSys, pp. 271–284 (2010)Google Scholar
  20. 20.
    Sythoff, J.T., Morrison, J.: Location-based services market forecast, 2011–2015. Pyramid Research (May 2011)Google Scholar
  21. 21.
    Technavio. Global indoor LBS market 2012–2016 (August 2013)Google Scholar
  22. 22.
    Van den Berghe, S., Weyn, M., Spruyt, V., Ledda, A.: Fusing camera and Wi-Fi sensors for opportunistic localization. In: Proc. UBICOMM, pp. 169–174 (2011)Google Scholar
  23. 23.
    Yilmaz, A., Javed, O., Shah, M.: Object tracking: a survey. ACM Comput. Surv. 38(4) (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Laura Radaelli
    • 1
  • Yael Moses
    • 2
  • Christian S. Jensen
    • 3
  1. 1.Department of Computer ScienceAarhus UniversityAarhusDenmark
  2. 2.The Efi Arazi School of Computer ScienceThe Interdisciplinary CenterHerzliyaIsrael
  3. 3.Department of Computer ScienceAalborg UniversityAalborgDenmark

Personalised recommendations