Skip to main content

Science Frontiers with X-Ray Free Electron Laser Sources

  • Chapter
  • First Online:
Synchrotron Radiation

Abstract

The advent of X-rays can represent a groundbreaking advancement for innovative studies of the non-equilibrium physics, time-resolved spectroscopies and radiation scattering, unlocking the gate for a transformative X-ray tool for science. However, only the advent of fully spatial and temporal coherent X-ray sources, delivering ultrashort pulses and having the control on the light polarization and the photon frequency tunability will make the free electron lasers a revolutionary observational tool capable of bridging the critical gaps in our understanding of radiation-matter interactions. Such a light source will expand, by far beyond, our present days capability to use X-rays for imaging, structure determination, and spectroscopy, while piercing the frontier of the actual X-ray technology, detection systems and devices. In the following some preliminary examples, along with the future perspectives and applications to the study of the structure and properties of novel and exotic materials are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Z.T. Zhao et al., First lasing of an echo-enabled harmonic generation free-electron laser. Nat. Photonics 6(6), 360–363 (2012)

    Article  ADS  Google Scholar 

  2. E. Allaria, C. Callegari, D. Cocco, W.M. Fawley, M. Kiskinova, C. Masciovecchio, F. Parmigiani, The FERMI@Elettra free-electron-laser source for coherent x-ray physic: photon properties, beam transport systemand applications. New J. Phys. 12, 075002 (2012)

    Google Scholar 

  3. E. Allaria et al., Highly coherent and stable pulses from the FERMI seeded free-electron laser in the extreme ultravioler. Nat. Photonics 6, 699–704 (2012)

    Article  ADS  Google Scholar 

  4. E.J. Squires, How long does it take to male a measurement? Phys. Lett. A 148(8–9), 381–383 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  5. W. Chao, B.D. Harteneck, J.A. Liddle, E.H. Anderson, D.T. Attwood, Soft X-ray microscopy at a spatial resolution better than 15 nm. Nature 435(7046), 1210–1213 (2005)

    Article  ADS  Google Scholar 

  6. B. Kaulich, P. Thibault, A. Gianoncelli, M. Kiskinova, Transmission and emission x-ray microscopy: operation modes, contrast mechanisms and applications. J. Phys. Condens. Matter 23(8), 083002 (2011)

    Article  ADS  Google Scholar 

  7. J. Miao, P. Charalambous, J. Kirz, D. Sayre, Extending the methodology, of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens. Nature 400(6742), 342–344 (1999)

    Article  ADS  Google Scholar 

  8. H.N. Chapman et al., Femtosecond Diffractive Imaging with a Soft-X-ray Free-Electron Laser. Nat. Phys. 2(12), 839–843 (2006)

    Article  Google Scholar 

  9. A. Barty et al., Ultrafast single-shot diffraction imaging of nanoscale dynamics. Nat. Photonics 2, 415 (2008)

    Article  ADS  Google Scholar 

  10. R. Neutze, R. Wouts, D. Van der Spoel, E. Weckert, J. Hajdu, Potential for biomolecular imaging with femtosecond X-ray pulses. Nature 406, 752–757 (2000)

    Article  ADS  Google Scholar 

  11. M.M. Seibert et al., Single mimivirus particles intercepted and imaged with an x-ray laser. Nature 470, 78–81 (2011)

    Article  ADS  Google Scholar 

  12. H.N. Chapman et al., Femtosecond x-ray protein nanocrystallography. Nature 470, 73–77 (2011)

    Article  ADS  Google Scholar 

  13. T. Wang et al., Femtosecond single-shot imaging of nanoscale ferromagnetic order in Co/Pd multilayers using resonant X-ray holography. Phys. Rev. Lett. 108, 267403 (2012)

    Article  ADS  Google Scholar 

  14. B. Pfau et al., Ultrafast optical demagnetization manipulates nanoscale spin structure in domain walls. Nat. Commun. 3, 1100 (2012)

    Article  ADS  Google Scholar 

  15. P.A. Brühwiler, O. Karis, N. Mårtensson, Charge-transfer dynamics studied using resonant core spectroscopies. Rev. Mod. Phys. 74, 703 (2002)

    Article  ADS  Google Scholar 

  16. T. Popmintchev et al., Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers. Science 336, 1287 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  17. A. Pietzsch et al., Towards time resolve core level photoelectron spectroscopy with femtosecond x-ray free-electron lasers. New J. Phys. 10, 033004 (2008)

    Article  ADS  Google Scholar 

  18. S. Hellmann et al., Ultrafast Melting of a Charge-Density Wave in the Mott Insulator 1T-TaS\(_{2}\). PRL 105, 187401 (2010)

    Article  ADS  Google Scholar 

  19. S. Hellmann et al., Time-resolved x-ray photoelectron spectroscopy at FLASH. New J. Phys. 14, 013062 (2012)

    Article  ADS  Google Scholar 

  20. E. Allaria et al., Tunability experiments at the FERMI@Elettra free-electron laser. New J. Phys. 14, 113009 (2012)

    Article  ADS  Google Scholar 

  21. D.P. Bernstein et al., Near edge x-ray absorption fine structure spectroscopy with x-ray free-electron lasers. Appl. Phys. Lett. 95, 134102 (2009)

    Article  ADS  Google Scholar 

  22. M. Beye et al., The liquid-liquid phase transition in silicon revealed by snapshots of valence electrons. PNAS 107(39), 16772–16776 (2010)

    Article  ADS  Google Scholar 

  23. M. Dell’Angela et al., Real-time observation of surface bond breaking with an X-ray laser. Science 339(6125), 1302–1305 (2013)

    Article  ADS  Google Scholar 

  24. S.M. Vinko, Creation and diagnosis of a solid-density plasma with an X-ray free-electron laser. Nature 482, 59 (2012)

    Article  ADS  Google Scholar 

  25. A. Vaterlaus, M. Aeschlimann, M. Lutz, M. Stampanoni, F. Meier, Magnetization reversal in a-GdTbFe investigated by time-resolved, spin-polarized photoemission. J. Magn. Magn. Mat. 83, 85–86 (1990)

    Article  ADS  Google Scholar 

  26. E. Baurepaire, J.-C. Merle, A. Daunois, J.-Y. Bigot, Ultrafast spin dynamics in ferromagnetic Nickel. PRL 76(22), 4250–4253 (1996)

    Article  ADS  Google Scholar 

  27. J. Stohr, H.C. Siegmann, Magnetism (Springer, Berlin, 2006)

    Google Scholar 

  28. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds (Wiley, New York, 1986)

    Google Scholar 

  29. U. Bovensiepen, Coherent and incoherent excitations of the Gd(0001) surface on ultrafast timescales. J. Phys. Condens. Mat. 19, 083201 (2007)

    Google Scholar 

  30. J.-Y. Bigot, V. Mircea, E. Beaurepaire, Coherent ultrafast magnetism induced by femtosecond laser pulses. Nat. Phys. 5, 515–520 (2009)

    Article  Google Scholar 

  31. R.J. Elliott, Theory of the effect of spin-orbit coupling on magnetic resonance in some semiconductors. Phys. Rev. 96(2), 266–279 (1954)

    Article  ADS  MATH  Google Scholar 

  32. C. Boeglin et al., Distinguishing the ultrafast dynamics of spin and orbital moments in solids. Nature 465, 458–461 (2010)

    Article  ADS  Google Scholar 

  33. H.K. Wong et al., Superconducting properties of V/Fe superlattices. J. Low Temp. Phys. 63, 307 (1986)

    Article  ADS  Google Scholar 

  34. C. Strunk et al., Superconductivity in layered Nb/Gd films. PRB 49, 4053 (1994)

    Article  ADS  Google Scholar 

  35. Th Muhge et al., Possible origin for oscillatory superconducting transition temperature in superconductor/ferromagneti multilayers. PRL 77, 1857–1860 (1996)

    Article  ADS  Google Scholar 

  36. Z. Radovic et al., Transition temperatures of superconductor-ferromagnet superlattices. PRB 44, 759–764 (1991)

    Article  ADS  Google Scholar 

  37. G. Jakob et al., Superconductivity and gaint negative magnetoresistance in YBa\(_{2}\)Cu\(_{3}\) O\(_{7}\)/La\(_{0.67}\)Ba\(_{0.33}\)MnO\(_{3}\) superlattices. Appl. Phys. Lett. 66, 2564 (1995)

    Article  ADS  Google Scholar 

  38. A.M. Goldman et al., Cuprate/manganite heterostructures. J. Magn. Magn. Mater. 200, 69 (1999)

    Article  ADS  Google Scholar 

  39. Z. Sefrioui et al., Ferromagnetic/superconducting proximity effect in La\(_{0.7}\)Ca\(_{0.3}\)MnO\(_{3 }\)/YBa\(_{2}\) C\(_{3}\)O\(_{7-\delta }\) superlattices. RB 67, 214511 (2003)

    Google Scholar 

  40. T. Holden et al., Proximity induced metal insulator transition in YBa\(_{2}\)C\(_{3}\)O\(_{7}\)/ La\(_{2/3}\)Ca\(_{1/3}\)MnO\(_{3 }\) superlattices. PRB 69, 064505 (2004)

    Article  ADS  Google Scholar 

  41. N. Haberkorn et al., Antiferromagnetism at the YBa\(_{2}\)C\(_{3}\)O\(_{7}\)/La\(_{2/3}\)Ca\(_{1/3}\)MnO\(_{3}\) interface. Appl. Phys. Lett. 84, 3927 (2004)

    Article  ADS  Google Scholar 

  42. V. Pena et al., Giant magnetoresistance in ferromagnet/superconductor superlattices. PRL 94, 057002 (2005)

    Article  ADS  Google Scholar 

  43. J. Stahn et al., Magnetic proximity effect in perovskite superconductor/ferromagnet multilayers. PRB 71, 140509(R) (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martina Dell’Angela .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Capotondi, F., Dell’Angela, M., Malvestuto, M., Parmigiani, F. (2015). Science Frontiers with X-Ray Free Electron Laser Sources. In: Mobilio, S., Boscherini, F., Meneghini, C. (eds) Synchrotron Radiation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55315-8_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55315-8_30

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-55314-1

  • Online ISBN: 978-3-642-55315-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics