Skip to main content

Instrumentation at Synchrotron Radiation Beamlines

  • Chapter
  • First Online:
Synchrotron Radiation

Abstract

Today there are a number of third-generation synchrotron facilities around the world, which are dedicated to the production of extremely intense radiation, ranging from infrared to hard X-rays. The wavelength tunability and the very high brightness of these sources have opened a wide range of new characterization procedures for research purposes. This paragraph is intended to describe various facets of both technological and analytical methods using synchrotron radiation, in order to help researchers and students who are interested in the study of materials. First, a concise introduction to synchrotron facilities and an overview of the main characteristics of the existing third-generation sources are presented. Then a basic line-up of beamlines for different energy ranges as well as the problems associated to beamline constructions and choices are described. Finally, for each energy range, a brief description of some techniques available in third-generation synchrotron facilities is given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L.G. Parratt, Phys. Rev. B 95, 359–369 (1954)

    Article  ADS  Google Scholar 

  2. W.H. Zachariasen, Theory of X-ray Diffraction in Crystals (Dover, New York, 1945)

    Google Scholar 

  3. J. Hrdý, Czech. J. Phys. B 39, 261–265 (1989)

    Google Scholar 

  4. R. Frahm, Rev. Sci. Instrum. 60, 2515–2518 (1989)

    Article  ADS  Google Scholar 

  5. S. Narayanan, A.R. Sandy, M. Sprung, J. Sullivan, C. Preissner, D. Shu, AIP Conf. Proc. 879, 911–914 (2007)

    Article  ADS  Google Scholar 

  6. J. Als-Nielsen, G. Grübel, B.S. Clausen, Nucl. Inst. Methods Phys. Res. B 97, 522–525 (1995)

    Google Scholar 

  7. E. Fonda, A. Rochet, M. Ribbens, L. Barthe, S. Belin, V. Briois, J. Synchrotron Rad. 19, 417–424 (2012)

    Article  Google Scholar 

  8. M. Lemonnier, R. Fourme, F. Rousseaux, R. Kahn, Nucl. Inst. Methods Phys. Res. A 152, 109–111 (1977)

    Google Scholar 

  9. J.A. Golovchenko, R.A. Levesque, P.L. Cowan, Rev. Sci. Instr. 52, 509–516 (1981)

    Article  ADS  Google Scholar 

  10. D.M. Mills, M.T. King, Nucl. Inst. Methods Phys. Res. A 208, 341–347 (1983)

    Google Scholar 

  11. J. Goulon, M. Lemonnier, R. Cortes, A. Retournard, D. Raoux, Nucl. Inst. Methods Phys. Res. A 208, 625–630 (1983)

    Google Scholar 

  12. J.W.M. DuMond, Phys. Rev. 52, 872–883 (1937)

    Article  ADS  Google Scholar 

  13. G. Faigel, D.P. Siddons, J.B. Hastings, P.E. Haustein, J.R. Grover, J.P. Remeika, A.S. Cooper, Phys. Rev. Lett. 58, 2699–2701 (1987)

    Article  ADS  Google Scholar 

  14. H. Tolentino, A.R.D. Rodrigues, Rev. Sci. Instrum. 63, 946–949 (1992)

    Article  ADS  Google Scholar 

  15. K. Nakayama, H. Hashizume, A. Miyoshi, S. Kikuta, K. Kohra, Z. Naturforsch. Teil A 28, 632–635 (1971)

    ADS  Google Scholar 

  16. S. Díaz-Moreno, J. Synchrotron Rad. 19, 863–868 (2012)

    Article  Google Scholar 

  17. T. Matsushita, T. Ishikawa, H. Oyanagi, Nucl. Inst. Methods Phys. Res. A 246, 377–379 (1986)

    Google Scholar 

  18. H. Amenitsch, S. Bernstorff, M. Rappolt, H. Kriechbaum, H. Mio, P. Laggner, J. Synchrotron Rad. 5, 506–508 (1998). See also www.elettra.eu/lightsources/elettra/elettra-beamlines/saxs.html

  19. G. Aquilanti, O. Mathon, S. Pascarelli, J. Synchrotron Rad. 16, 699–706 (2009)

    Article  Google Scholar 

  20. F. Baudelet, Q. Kong, L. Nataf, J.D. Cafun, A. Congeduti, A. Monza, S. Chagnot, J.P. Itié, High Press. Res. 31, 136–139 (2011)

    Article  ADS  Google Scholar 

  21. www.elettra.eu/lightsources/elettra/elettra-beamlines/mcx.html

  22. A. Di Cicco, G. Aquilanti, M. Minicucci, E. Principi, N. Novello, A. Cognigni, L. Olivi, J. Phys. Conf. Ser. 190, 012043 (2009)

    Article  ADS  Google Scholar 

  23. M. Born, E. Wolf, Principles of Optics (Pergamon Press, Oxford 1980)

    Google Scholar 

  24. M.C. Hutley, Diffraction Grating (Academic Press, London, 1982)

    Google Scholar 

  25. M.R. Howells, Section 4.3 in X-Ray Data Booklet, ed. by A.C. Thompson, D. Vaughan (Lawrence Berkeley National Laboratory, California, 2001)

    Google Scholar 

  26. E. Spiller, Chapter 12 in Handbook on Synchrotron Radiation, vol.1, ed. by E.E. Koch (NorthHolland, Amsterdam, 1983), pp. 1093–1130

    Google Scholar 

  27. H. Haber, J. Opt. Soc. Am. 40, 153–165 (1950)

    Article  ADS  Google Scholar 

  28. P. Kirkpatrick, A.V. Baez, J. Opt. Soc. Am. 38, 766–774 (1948)

    Article  ADS  Google Scholar 

  29. W.B. Peatman, Gratings, Mirrors and Slits—Beamline Design for Soft-X-ray Synchrotron Radiation Sources (Gordon and Breach Science Publishers, Amsterdam, 1997)

    Google Scholar 

  30. H. Petersen, Opt. Commun. 40, 402–406 (1982)

    Google Scholar 

  31. H. Petersen, SPIE 733, 262–264 (1986)

    Google Scholar 

  32. W. Jark, Rev. Sci. Instrum. 63, 1241–1246 (1992)

    Google Scholar 

  33. V.N. Strocov, T. Schmitt, U. Flechsig, T. Schmidt, A. Imhof, Q. Chen, J. Raabe, R. Betemps, D. Zimoch, J. Krempasky, X. Wang, M. Grioni, A. Piazzalunga, L. Patthey, J. Synchrotron Rad. 17, 631–643 (2010)

    Article  Google Scholar 

  34. www.elettra.eu/lightsources/elettra/elettra-beamlines/superesca.html

  35. http://ssg.als.lbl.gov/ssgdirectory/arenholz/BL402.html

  36. R. Follath, F. Senf, Nucl. Inst. Methods Phys. Res. A 390, 388–394 (1997)

    Google Scholar 

  37. H. Petersen, C. Jung, C. Hellwig, W.B. Peatman, W. Gudat, Rev. Sci. Instr. 66, 1–14 (1995)

    Article  ADS  Google Scholar 

  38. R.L. Johnson, Chapter 3 in Handbook on Synchrotron Radiation, vol.1, ed. by E.E. Koch (NorthHolland, Amsterdam, 1983), pp. 173–260

    Google Scholar 

  39. C.T. Chen, F. Sette, Rev. Sci. Instrum. 60, 1616 (1989)

    Article  ADS  Google Scholar 

  40. R. Reininger, V. Saile, Nucl. Inst. Methods Phys. Res. A 288, 343–345 (1990)

    Google Scholar 

  41. E. Dietz, W. Braun, A.M. Bradshaw, R.L. Johnson, Nucl. Inst. Methods Phys. Res. A 239, 359–366 (1985)

    Google Scholar 

  42. R. Reininger, J. Bozek, Y. Chuang, M. Howells, N. Kelez, S. Prestemon, S. Marks, T. Warwick, C. Jozwiak, A. Lanzara, Hasan,M.Z., Hussain, Z. AIP Conf. Proc. 879, 509–512 (2007)

    Google Scholar 

  43. H.A. Rowland, Philos. Mag. 13, 469–474 (1882)

    Google Scholar 

  44. A. Rowland, Philos. Mag.16, 197–202 (1883)

    Google Scholar 

  45. L. Petaccia, P. Vilmercati, S. Gorovikov, M. Barnaba, A. Bianco, D. Cocco, C. Masciovecchio, A. Goldoni, Nucl. Inst. Methods Phys. Res. A 606, 780–784 (2009). www.elettra.eu/lightsources/elettra/elettra-beamlines/badelph.html

  46. www.elettra.eu/lightsources/elettra/elettra-beamlines/iuvs.html

  47. http://www-ssrl.slac.stanford.edu/beamlines/bl5-4/

  48. T. Kubala, M. Bissen, M. Severson, G. Rogers, D. Wallace, M. Thikim, M.V. Fisher, AIP Conf. Proc. 417, 91–94 (2000)

    Article  ADS  Google Scholar 

  49. http://www.src.wisc.edu/facility/list/Port_011.pdf

  50. http://www.nsls.bnl.gov/beamlines/beamline.asp?blid=U13UB

  51. T. Yamasaki, K. Yamazaki, A. Ino, M. Arita, H. Namatame, M. Taniguchi, A. Fujimori, Z.-X. Shen, M. Ishikado, S. Uchida, Phys. Rev. B 75, 140513(R) (2007)

    Article  ADS  Google Scholar 

  52. http://www.hsrc.hiroshima-u.ac.jp/

  53. G. Reichardt, J. Bahrdt, J.-S. Schmidt, W. Gudat, A. Ehresmann, R. Müller-Albrecht, H. Molter, H. Schmoranzer, M. Martins, N. Schwentner, S. Sasaki, Nucl. Inst. Methods Phys. Res. A 467–468, 462–465 (2001)

    Google Scholar 

  54. K. Radler, J. Berkowitz, J. Chem. Phys. 70, 216–220 (1979)

    ADS  Google Scholar 

  55. P.A. Heimann, M. Koike, C.W. Hsu, D. Blank, X.M. Yang, A.G. Suits, Y.T. Lee, M. Evans, C.Y. Ng, C. Flaim, H.A. Padmore, Rev. Sci. Instrum. 68, 1945–1951 (1997)

    Article  ADS  Google Scholar 

  56. K. Ito, T. Sasaki, T. Namioka, K. Ueda, Y. Morioka, Nucl. Inst. Methods Phys. Res. A 246, 290–293 (1986)

    Google Scholar 

  57. S. Hufner, Photoelectron Spectroscopy (Springer-Verlag, Berlin, 1995)

    Book  Google Scholar 

  58. F. Reinert, S. Hufner, New, J. Phys. 7, 97 (2005)

    Google Scholar 

  59. M.P. Seah, W.A. Dench, Surf. Interface Anal. 1, 2–11 (1979)

    Article  Google Scholar 

  60. B. Kaulich, P. Thibault, A. Gianoncelli, M. Kiskinova, J. Phys.: Condens. Matter 23, 083002 (2011)

    Google Scholar 

  61. R. Falcone, C. Jacobsen, J. Kirz, S. Marchesini, D. Shapiro, J. Spence, Contemporary Physics 52, 293–318 (2011)

    Google Scholar 

  62. A. Sakdinawat, D. Attwood, Nature Photonics 4, 840–848 (2010)

    Google Scholar 

  63. http://cheiron2007.spring8.or.jp/pdf/Lai.pdf

  64. A. Snigirev, V. Kohn, I. Snigireva, B. Lengeler, Nature 384, 49–51 (1996)

    Article  ADS  Google Scholar 

  65. C.G. Schroer, J. Meyer, M. Kuhlmann, B. Benner, T.F. Günzler, B. Lengeler, C. Rau, T. Weitkamp, A. Snigirev, I. Snigireva, Appl. Phys. Lett. 81, 1527–1529 (2002)

    Article  ADS  Google Scholar 

  66. C.G. Schroer, M. Kuhlmann, U.T. Hunger, T.F. Günzler, O. Kurapova, S. Feste, F. Frehse, B. Lengeler, M. Drakopoulos, A. Somogyi, A.S. Simionovici, A. Snigirev, I. Snigireva, C. Schug, W.H. Schröder, Appl. Phys. Lett. 82, 1485–1487 (2003)

    Article  ADS  Google Scholar 

  67. C.G. Schroer, O. Kurapova, J. Patommel, P. Boye, J. Feldkamp, B. Lengeler, M. Burghammer, C. Riekel, L. Vincze, A. van der Hart, M. Küchler, Appl. Phys. Lett. 87, 124103 (2005)

    Article  ADS  Google Scholar 

  68. A. Bosak, I. Snigireva, K.S. Napolskii, A. Snigirev, Adv. Mater. 22, 3256–3259 (2010)

    Article  Google Scholar 

  69. E.L. Church, P.Z. Takacs, Opt. Eng. 34, 353–360 (1995)

    Article  ADS  Google Scholar 

  70. G.E. Ice, J.S. Chung, J. Tischler, A. Lunt, L. Assoufid, Rev. Sci. Instrum. 71, 2635–2639 (2000)

    Google Scholar 

  71. K. Yamauchi, K. Yamamura, H. Mimura, Y. Sano, A. Saito, K. Endo, A. Souvorov, M. Yabashi, K. Tamasaku, T. Ishikawa, Y. Mori, Jpn. J. Appl. Phys. 42, 7129–7134 (2003)

    Google Scholar 

  72. Y. Dabin, G. Rostaing, A. Rommeveaux, A.K. Freund, Proc. SPIE 4782, 235–245 (2002)

    Article  ADS  Google Scholar 

  73. C. Morawe, P. Pecci, J.C. Peffern, E. Ziegler, Rev. Sci. Instrum. 70, 3227–3232 (1999)

    Article  ADS  Google Scholar 

  74. S. Matsuyama, H. Mimura, H. Yumoto, Y. Sano, K. Yamamura, M. Yabashi, Y. Nishino, K. Tamasaku, T. Ishikawa, K. Yamauchi, Rev. Sci. Instrum. 77, 103102–103106 (2006)

    Article  ADS  Google Scholar 

  75. H. Mimura, S. Handa, T. Kimura, H. Yumoto, D. Yamakawa, H. Yokoyama, S. Matsuyama, K. Inagaki, K. Yamamura, Y. Sano, K. Tamasaku, Y. Nishino, M. Yabashi, T. Ishikawa, K. Yamauchi, Nat. Phys. 6, 122–125 (2010)

    Article  Google Scholar 

  76. M. Howells, C. Jacobsen, T. Warwick, A. van den Bos, in Science of Microscopy, ed. by P.W. Hawkes, J.C.H. Spence (Springer, New York, 2007), pp. 835–926

    Google Scholar 

  77. S.-R. Wu, Y. Hwu, G. Margaritondo, Materials 5, 1752–1773 (2012)

    Article  ADS  Google Scholar 

  78. J. Vila-Comamala, K. Jefimovs, J. Raabe, T. Pilvi, R.H. Fink, M. Senoner, A. Maassdorf, M. Ritala, C. David, Ultramicroscopy 109, 1360–1364 (2009); W. Chao, J. Kim, S. Rekawa, P. Fischer, E.H. Anderson, Opt Express 17, 17669–17677 (2009)

    Google Scholar 

  79. J. Vila-Comamala, S. Gorelick, V.A. Guzenko, E. Färm, M. Ritala, C. David, Nanotechnology 21, 285305 (2010)

    Article  Google Scholar 

  80. T. Koyama, H. Takano, S. Konishi, T. Tsuji, H. Takenaka, S. Ichimaru, T. Ohchi, Y. Kagoshima, Rev. Sci. Instrum. 83, 013705 (2012)

    Google Scholar 

  81. G.C. Yin, Y.F. Song, M.T. Tang, F.R. Chen, K.S. Liang, F.W. Duewer, M. Feser, W.B. Yun, H.P.D. Shieh, Appl. Phys. Lett. 89, 221122 (2006)

    Google Scholar 

  82. S. Gorelick, J. Vila-Comamala, V.A. Guzenko, R. Barrett, M. Salome, C.J. David, Synchrotron Radiat. 18, 442–446 (2011)

    Google Scholar 

  83. H.C. Kang, J. Maser, G.B. Stephenson, C. Liu, R. Conley, A.T. Macrander, S. Vogt, Phys. Rev. Lett. 96, 127401–127405 (2006)

    Article  ADS  Google Scholar 

  84. C. Liu, R. Conley, A.T. MacRander, J. Maser, H.C. Kang, M.A. Zurbuchen, G.B. Stephenson, J. Appl. Phys. 98, 113519 (2005)

    Article  ADS  Google Scholar 

  85. H. Yan, Y.S. Chu, J. Synchrotron Rad. 20, 89–97 (2013)

    Article  Google Scholar 

  86. H.C. Kang, H.F. Yan, R.P. Winarski, M.V. Holt, J. Maser, C.A. Liu, R. Conley, S. Vogt, A.T. Macrander, G.B. Stephenson, Appl. Phys. Lett. 92, 221114 (2008)

    Google Scholar 

  87. T. Koyama, H. Takenaka, S. Ichimaru, T. Ohchi, T. Tsuji, H. Takano, Y. Kagoshima, AIP Conf. Proc. 1365, 24–27 (2011)

    Google Scholar 

  88. H.F. Yan, J. Maser, A. Macrander, Q. Shen, S. Vogt, G.B. Stephenson, H.C. Kang, Phys. Rev. B. 76, 115438 (2007)

    Article  ADS  Google Scholar 

  89. R. Conley, C. Liu, C.M. Kewish, A.T. Macrander, C. Morawe, Proc. SPIE 6705, 670505 (2007)

    Article  Google Scholar 

  90. H. Yan, V. Rose, D. Shu, E. Lima, H.C. Kang, R. Conley, C. Liu, N. Jahedi, A.T. Macrander, G.B. Stephenson, M. Holt, Y.S. Chu, M. Lu, J. Maser, Opt. Express 19, 15069–15076 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Goldoni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Aquilanti, G., Vaccari, L., Plaisier, J.R., Goldoni, A. (2015). Instrumentation at Synchrotron Radiation Beamlines. In: Mobilio, S., Boscherini, F., Meneghini, C. (eds) Synchrotron Radiation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55315-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55315-8_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-55314-1

  • Online ISBN: 978-3-642-55315-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics