Skip to main content

Chemical and Magnetic Imaging with X-Ray Photoemission Electron Microscopy

  • Chapter
  • First Online:
Synchrotron Radiation

Abstract

X-ray photoemission electron microscopy (XPEEM) is a full-field imaging technique giving access to the chemical state and magnetic order of laterally inhomogeneous surfaces, interfaces and thin films. In its simplest variant, synchrotron-based PEEM uses secondary emission to map local differences in the oxidation state, valence, and bond orientation around the emitter. The combination with X-ray circular and linear dichroism techniques represents the most frequent application, and has found extensive use in imaging ferromagnetic and antiferromagnetic domains. XPEEM instruments with energy filter can implement laterally resolved X-ray photoelectron spectroscopy (XPS) and angle resolved photoelectron spectroscopy (ARPES), reaching high chemical and electronic structure sensitivity. Here, we describe the basic aspects and methods of synchrotron-based spectromicroscopy with the PEEM, and its combination with low energy electron microscopy (LEEM). The present state of the art of the technique will be illustrated by applications in diverse fields, spanning from surface and materials sciences to biology and magnetism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Günther, B. Kaulich, L. Gregoratti, M. Kiskinova, Progr. Surf. Sci. 70(48), 187 (2002). doi:10.1016/S0079-6816(02)00007-2

  2. J. Feng, A. Scholl, Science of Microscopy, Photoemission Electron Microscopy (PEEM) (Springer, New York, 2007)

    Google Scholar 

  3. J. Stöhr, H. Siegmann, Magnetism: From Fundamentals to Nanoscale Dynamics, vol. 152, Springer Series in Solid-State Sciences (Springer, Berlin, 2007)

    Google Scholar 

  4. E. Bauer, J. Phys.: Condens. Matter 13(49), 11391 (2001). doi:10.1088/0953-8984/13/49/316

  5. P. Gilbert, J. Electron Spectrosc. Relat. Phenom. 185(10), 395 (2012). doi:10.1016/j.elspec.2012.06.001

    Article  Google Scholar 

  6. E. Bauer, J. Electron Spectrosc. Relat. Phenom. 185(10), 314 (2012). doi:10.1016/j.elspec.2012.08.001

    Article  Google Scholar 

  7. E. Bauer, Ultramicroscopy 119, 18 (2012). doi:10.1016/j.ultramic.2011.09.006

    Article  Google Scholar 

  8. A. Locatelli, E. Bauer, J. Phys.: Condens. Matter 20(9), 093002 (2008). doi:10.1088/0953-8984/20/9/093002

    Article  ADS  Google Scholar 

  9. G. Margaritondo, J. Electron Spectrosc. Relat. Phenom. 178179, 273 (2010). doi:10.1016/j.elspec.2009.05.007

  10. C.M. Schneider, A. Krasyuk, S. Nepijko, A. Oelsner, G. Schönhense, J. Magn. Magn. Mater. 304(1), 6 (2006). doi:10.1016/j.jmmm.2006.02.013

    Article  ADS  Google Scholar 

  11. G. Schönhense, J.Electron Spectrosc. Relat. Phenom. 137140, 769 (2004). doi:10.1016/j.elspec.2004.02.161

  12. R. van Gastel, I. Sikharulidze, S. Schramm, J. Abrahams, B. Poelsema, Ultramicroscopy 110(1), 33 (2009). doi:10.1016/j.ultramic.2009.09.002

  13. E. Bauer, Rep. Prog. Phys. 57(9), 895 (1994). doi:10.1088/0034-4885/57/9/002

    Article  ADS  Google Scholar 

  14. J. Chmelik, L. Veneklasen, G. Marx, Optik 83, 155 (1989)

    Google Scholar 

  15. T. Schmidt, U. Groh, R. Fink, E. Umbach, O. Schaff, W. Engel, B. Richter, H. Kuhlenbeck, R. Schlogl, H.J. Freund, A.M. Bradshaw, D. Preikszas, P. Hartel, R. Spehr, H. Rose, G. Llilienkamp, E. Bauer, G. Benner, Surf. Rev. Lett. 09(01), 223 (2002). doi:10.1142/S0218625X02001811

  16. W. Wan, J. Feng, H. Padmore, D. Robin, Nucl. Instrum. Methods Phys. Res. Sect. A 519(12), 222 (2004). doi:10.1016/j.nima.2003.11.159

  17. R. Tromp, J. Hannon, A. Ellis, W. Wan, A. Berghaus, O. Schaff, Ultramicroscopy 110(7), 852 (2010). doi:10.1016/j.ultramic.2010.03.005

    Article  Google Scholar 

  18. T. Schmidt, A. Sala, H. Marchetto, E. Umbach, H.J. Freund, Ultramicroscopy 126, 23 (2013). doi:10.1016/j.ultramic.2012.11.004

    Article  Google Scholar 

  19. R. Tromp, J. Hannon, W. Wan, A. Berghaus, O. Schaff, Ultramicroscopy 127, 25 (2013). doi:10.1016/j.ultramic.2012.07.016

  20. A. Locatelli, T.O. Menteş, M.Á. Niño, E. Bauer, Ultramicroscopy 111(8), 1447 (2011). doi:10.1016/j.ultramic.2010.12.020

  21. T. Warwick, K. Franck, J.B. Kortright, G. Meigs, M. Moronne, S. Myneni, E. Rotenberg, S. Seal, W.F. Steele, H. Ade, A. Garcia, S. Cerasari, J. Denlinger, S. Hayakawa, A.P. Hitchcock, T. Tyliszczak, J. Kikuma, E.G. Rightor, H.J. Shin, B.P. Tonner, Rev. Sci. Instrum. 69(8), 2964 (1998). doi:10.1063/1.1149041

  22. E. Bauer, Science of Microscopy, LEEM and SPLEEM (Springer, New York, 2007)

    Google Scholar 

  23. T.O. Menteş, A. Locatelli, J. Electron Spectrosc. Relat. Phenom. 185(10), 323 (2012). doi:10.1016/j.elspec.2012.07.007

  24. T. Schmidt, S. Heun, J. Slezak, J. Diaz, K.C. Prince, G. Lilienkamp, E. Bauer, Surf. Rev. Lett. 5(6), 1287 (1998). doi:10.1142/S0218625X98001626

    Article  Google Scholar 

  25. R. Tromp, Ultramicroscopy 120, 73 (2012). doi:10.1016/j.ultramic.2012.06.003

    Article  Google Scholar 

  26. B.P. Tonner, G.R. Harp, Rev. Sci. Instrum. 59(6), 853 (1988). doi:10.1063/1.1139792

    Article  ADS  Google Scholar 

  27. C.M. Schneider, G. Schönhense, Rep. Progr. Phys. 65(12), 1785 (2002)

    Article  ADS  Google Scholar 

  28. S. Hüfner, Photoelectron Spectroscopy: Principles and Applications. Advanced Texts in Physics (Springer, Berlin, 2003)

    Google Scholar 

  29. C. Wiemann, M. Patt, S. Cramm, M. Escher, M. Merkel, A. Gloskovskii, S. Thiess, W. Drube, C.M. Schneider, Appl. Phys. Lett. 100(22), 223106 (2012). doi:10.1063/1.4722940

    Article  ADS  Google Scholar 

  30. F.J. Meyer zu Heringdorf, T. Schmidt, S. Heun, R. Hild, P. Zahl, B. Ressel, E. Bauer, M. Horn-von Hoegen, Phys. Rev. Lett. 86, 5088 (2001). doi:10.1103/PhysRevLett.86.5088

  31. G. Biasiol, S. Heun, L. Sorba, J. Nanoelectronics and Optoelectron. 6(1), 20–23 (2011). doi:10.1166/jno.2011.1130

  32. T. Schmidt, J.I. Flege, S. Gangopadhyay, T. Clausen, A. Locatelli, S. Heun, J. Falta, Phys. Rev. Lett. 98, 066104 (2007). doi:10.1103/PhysRevLett.98.066104

    Article  ADS  Google Scholar 

  33. J.T. Robinson, F. Ratto, O. Moutanabbir, S. Heun, A. Locatelli, T.O. Menteş, L. Aballe, O.D. Dubon, Nano Lett. 7(9), 2655 (2007). doi:10.1021/nl071051y

    Article  ADS  Google Scholar 

  34. S. Suzuki, Y. Watanabe, Y. Homma, S. ya Fukuba, S. Heun, A. Locatelli, Appl. Phys. Lett. 85(1), 127 (2004). doi:10.1063/1.1768304

    Article  ADS  Google Scholar 

  35. A. Locatelli, T. Pabisiak, A. Pavlovska, T.O. Menteş, L. Aballe, A. Kiejna, E. Bauer, J. Phys.: Condens. Matter 19(8), 082202 (2007). doi:10.1088/0953-8984/19/8/082202

    Article  ADS  Google Scholar 

  36. T.O. Menteş, A. Locatelli, L. Aballe, A. Pavlovska, E. Bauer, T. Pabisiak, A. Kiejna, Phys. Rev. B 76, 155413 (2007). doi:10.1103/PhysRevB.76.155413

    Article  ADS  Google Scholar 

  37. D.S. Humphrey, G. Cabailh, C.L. Pang, C.A. Muryn, S.A. Cavill, H. Marchetto, A. Potenza, S.S. Dhesi, G. Thornton, Nano Lett. 9(1), 155 (2009). doi:10.1021/nl802703e

    Article  ADS  Google Scholar 

  38. S. Günther, A. Kolmakov, J. Kovac, M. Kiskinova, Ultramicroscopy 75(1), 35 (1998). doi:10.1016/S0304-3991(98)00047-3

  39. A. Locatelli, M. Kiskinova, Chemistry A Eur. J. 12(35), 8890 (2006). doi:10.1002/chem.200601189

    Article  Google Scholar 

  40. A. Schaak, S. Günther, F. Esch, E. Schütz, M. Hinz, M. Marsi, M. Kiskinova, R. Imbihl, Phys. Rev. Lett. 83, 1882 (1999). doi:10.1103/PhysRevLett.83.1882

    Article  ADS  Google Scholar 

  41. T. Schmidt, A. Schaak, S. Günther, B. Ressel, E. Bauer, R. Imbihl, Chem. Phys. Lett. 318(6), 549 (2000). doi:10.1016/S0009-2614(00)00061-0

    ADS  Google Scholar 

  42. L. Hong, H. Uecker, M. Hinz, L. Qiao, I.G. Kevrekidis, S. Günther, T.O. Menteş, A. Locatelli, R. Imbihl, Phys. Rev. E 78, 055203 (2008). doi:10.1103/PhysRevE.78.055203

    Article  ADS  Google Scholar 

  43. S. Günther, H. Liu, T.O. Mentes, A. Locatelli, R. Imbihl, Phys. Chem. Chem. Phys. 15, 8752 (2013). doi:10.1039/C3CP44478C

    Article  Google Scholar 

  44. A. Locatelli, C. Sbraccia, S. Heun, S. Baroni, M. Kiskinova, J. Am. Chem. Soc. 127(7), 2351 (2005). doi:10.1021/ja045285k

    Article  Google Scholar 

  45. Y.D. Decker, H. Marbach, M. Hinz, S. Günther, M. Kiskinova, A.S. Mikhailov, R. Imbihl, Phys. Rev. Lett. 92, 198305 (2004). doi:10.1103/PhysRevLett.92.198305

    Article  ADS  Google Scholar 

  46. A. Locatelli, T.O. Menteş, L. Aballe, A. Mikhailov, M. Kiskinova, J. Phys. Chem. B 110(39), 19108 (2006). doi:10.1021/jp065090u

    Google Scholar 

  47. R. Imbihl, J. Electron Spectrosc. Relat. Phenom. 185(10), 347 (2012). doi:10.1016/j.elspec.2012.05.001

    Article  Google Scholar 

  48. F. Lovis, M. Hesse, A. Locatelli, T.O. Menteş, M.A. Niño, G. Lilienkamp, B. Borkenhagen, R. Imbihl, J. Phys. Chem. C 115(39), 19149 (2011). doi:10.1021/jp206600q

    Article  Google Scholar 

  49. L. Aballe, A. Barinov, A. Locatelli, S. Heun, M. Kiskinova, Phys. Rev. Lett. 93, 196103 (2004). doi:10.1103/PhysRevLett.93.196103

    Article  ADS  Google Scholar 

  50. M. Altman, W. Chung, Z. He, H. Poon, S. Tong, Appl. Surf. Sci. 169170, 82 (2001). doi:10.1016/S0169-4332(00)00644-9

  51. N. Binggeli, M. Altarelli, Phys. Rev. Lett. 96, 036805 (2006). doi:10.1103/PhysRevLett.96.036805

    Article  ADS  Google Scholar 

  52. L. Aballe, A. Barinov, N. Stojić, N. Binggeli, T.O. Menteş, A. Locatelli, M. Kiskinova, J. Phys.: Condens. Matter 22(1), 015001 (2010). doi:10.1088/0953-8984/22/1/015001

    Article  ADS  Google Scholar 

  53. S. Günther, R. Reichelt, J. Wintterlin, A. Barinov, T.O. Menteş, M.Á. Niño, A. Locatelli, Appl. Phys. Lett. 93(23), 233117 (2008). doi:10.1063/1.3040685

    Article  ADS  Google Scholar 

  54. M. Batzill, Surf. Sci. Rep. 67(34), 83 (2012). doi:10.1016/j.surfrep.2011.12.001

  55. K.L. Man, M.S. Altman, J. Phys.: Condens. Matter 24(31), 314209 (2012). doi:10.1088/0953-8984/24/31/314209

    Article  ADS  Google Scholar 

  56. E. Loginova, N.C. Bartelt, P.J. Feibelman, K.F. McCarty, New J. Phys. 10(9), 093026 (2008)

    Google Scholar 

  57. P. Sutter, J.I. Flege, E.A. Sutter, Nat. Mater. 7, 406 (2008). doi:10.1038/nmat2166

    ADS  Google Scholar 

  58. E. Miniussi, M. Pozzo, A. Baraldi, E. Vesselli, R.R. Zhan, G. Comelli, T.O. Menteş, M.A. Niño, A. Locatelli, S. Lizzit, D. Alfè, Phys. Rev. Lett. 106, 216101 (2011). doi:10.1103/PhysRevLett.106.216101

    Article  ADS  Google Scholar 

  59. H. Hibino, H. Kageshima, F. Maeda, M. Nagase, Y. Kobayashi, H. Yamaguchi, Phys. Rev. B 77, 075413 (2008). doi:10.1103/PhysRevB.77.075413

    Article  ADS  Google Scholar 

  60. A. Locatelli, K.R. Knox, D. Cvetko, T.O. Menteş, M.Á. Niño, S. Wang, M.B. Yilmaz, P. Kim, R.M. Osgood, A. Morgante, ACS Nano 4(8), 4879 (2010). doi:10.1021/nn101116n

    Article  Google Scholar 

  61. R.M. Feenstra, N. Srivastava, Q. Gao, M. Widom, B. Diaconescu, T. Ohta, G.L. Kellogg, J.T. Robinson, I.V. Vlassiouk, Phys. Rev. B 87, 041406 (2013). doi:10.1103/PhysRevB.87.041406

    Article  ADS  Google Scholar 

  62. K.J. Kim, H. Lee, J.H. Choi, Y.S. Youn, J. Choi, H. Lee, T.H. Kang, M.C. Jung, H.J. Shin, H.J. Lee, S. Kim, B. Kim, Adv. Mater. 20(19), 3589 (2008). doi:10.1002/adma.200800742

    Article  Google Scholar 

  63. D. Pacilé, M. Papagno, A.F. Rodríguez, M. Grioni, L. Papagno, Ç.O. Girit, J.C. Meyer, G.E. Begtrup, A. Zettl, Phys. Rev. Lett. 101, 066806 (2008). doi:10.1103/PhysRevLett.101.066806

    Article  ADS  Google Scholar 

  64. H.K. Jeong, H.J. Noh, J.Y. Kim, L. Colakerol, P.A. Glans, M.H. Jin, K.E. Smith, Y.H. Lee, Phys. Rev. Lett. 102, 099701 (2009). doi:10.1103/PhysRevLett.102.099701

    Article  ADS  Google Scholar 

  65. N. Barrett, E. Conrad, K. Winkler, B. Kromker, Rev. Sci. Instrum. 83(8), 083706 (2012). doi:10.1063/1.4746279

  66. A. Locatelli, C. Wang, C. Africh, N. Stojić, T.O. Menteş, G. Comelli, N. Binggeli, ACS Nano 7(8), 6955 (2013). doi:10.1021/nn402178u

    Article  Google Scholar 

  67. P. Sutter, M.S. Hybertsen, J.T. Sadowski, E. Sutter, Nano Lett. 9(7), 2654 (2009). doi:10.1021/nl901040v

    Article  ADS  Google Scholar 

  68. P. Sutter, J.T. Sadowski, E. Sutter, Phys. Rev. B 80, 245411 (2009). doi:10.1103/PhysRevB.80.245411

    Article  ADS  Google Scholar 

  69. C. Mathieu, B. Lalmi, T.O. Menteş, E. Pallecchi, A. Locatelli, S. Latil, R. Belkhou, A. Ouerghi, Phys. Rev. B 86, 035435 (2012). doi:10.1103/PhysRevB.86.035435

    Article  ADS  Google Scholar 

  70. K.R. Knox, S. Wang, A. Morgante, D. Cvetko, A. Locatelli, T.O. Menteş, M.Á. Niño, P. Kim, R.M. Osgood, Phys. Rev. B 78, 201408 (2008). doi:10.1103/PhysRevB.78.201408

    Article  ADS  Google Scholar 

  71. K.R. Knox, A. Locatelli, M.B. Yilmaz, D. Cvetko, T.O. Menteş, M.Á. Niño, P. Kim, A. Morgante, R.M. Osgood, Phys. Rev. B 84, 115401 (2011). doi:10.1103/PhysRevB.84.115401

  72. C.E. Killian, R.A. Metzler, Y. Gong, T.H. Churchill, I.C. Olson, V. Trubetskoy, M.B. Christensen, J.H. Fournelle, F. De Carlo, S. Cohen, J. Mahamid, A. Scholl, A. Young, A. Doran, F.H. Wilt, S.N. Coppersmith, P.U.P.A. Gilbert, Adv. Funct. Mater. 21(4), 682 (2011). doi:10.1002/adfm.201001546

  73. O.H. Griffith, G.F. Rempfer, Annu. Rev. Biophys. Biophys. Chem. 14(1), 113 (1985). doi:10.1146/annurev.bb.14.060185.000553

  74. G. de Stasio, S.F. Koranda, B.P. Tonner, G.R. Harp, D. Mercanti, M.T. Ciotti, G. Margaritondo, EPL (Europhysics Letters) 19(7), 655 (1992). doi:10.1209/0295-5075/19/7/015

    Article  ADS  Google Scholar 

  75. C.S. Chan, G. De Stasio, S.A. Welch, M. Girasole, B.H. Frazer, M.V. Nesterova, S. Fakra, J.F. Banfield, Science 303(5664), 1656 (2004). doi:10.1126/science.1092098

    Article  ADS  Google Scholar 

  76. R.A. Metzler, M. Abrecht, R.M. Olabisi, D. Ariosa, C.J. Johnson, B.H. Frazer, S.N. Coppersmith, P.U.P.A. Gilbert, Phys. Rev. Lett. 98, 268102 (2007). doi:10.1103/PhysRevLett.98.268102

  77. P.U.P.A. Gilbert, A. Young, S.N. Coppersmith, Proc. Nat. Acad. Sci. 108(28), 11350 (2011). doi:10.1073/pnas.1107917108

    Article  ADS  Google Scholar 

  78. I.C. Olson, R. Kozdon, J.W. Valley, P.U.P.A. Gilbert, J. Am. Chem. Soc. 134(17), 7351 (2012). doi:10.1021/ja210808s

    Article  Google Scholar 

  79. G.D. Stasio, B.H. Frazer, B. Gilbert, K.L. Richter, J.W. Valley, Ultramicroscopy 98(1), 57 (2003). doi:10.1016/S0304-3991(03)00088-3

    Article  Google Scholar 

  80. G. Schütz, W. Wagner, W. Wilhelm, P. Kienle, R. Zeller, R. Frahm, G. Materlik, Phys. Rev. Lett. 58, 737 (1987). doi:10.1103/PhysRevLett.58.737

    Article  ADS  Google Scholar 

  81. J. Stöhr, Y. Wu, B. Hermsmeier, M. Samant, G. Harp, S. Koranda, D. Dunham, B. Tonner, Science 259, 658 (1993)

    ADS  Google Scholar 

  82. C.M. Schneider, K. Holldack, M. Kinzler, M. Grunze, H.P. Oepen, F. Schafers, H. Petersen, K. Meinel, J. Kirschner, Appl. Phys. Lett. 63(17), 2432 (1993). doi:10.1063/1.110498

    Article  ADS  Google Scholar 

  83. F.U. Hillebrecht, T. Kinoshita, D. Spanke, J. Dresselhaus, C. Roth, H.B. Rose, E. Kisker, Phys. Rev. Lett. 75, 2224 (1995). doi:10.1103/PhysRevLett.75.2224

    Article  ADS  Google Scholar 

  84. J. Stöhr, A. Scholl, T.J. Regan, S. Anders, J. Lüning, M.R. Scheinfein, H.A. Padmore, R.L. White, Phys. Rev. Lett. 83, 1862 (1999). doi:10.1103/PhysRevLett.83.1862

    Article  ADS  Google Scholar 

  85. F. Nolting, A. Scholl, J. Stöhr, J.W. Seo, J. Fompeyrine, H. Siegwart, J.P. Locquet, S. Anders, J. Lüning, E.E. Fullerton, M.F. Toney, M.R. Scheinfein, H.A. Padmore, Nature 405, 767 (2000). doi:10.1038/35015515

    Article  ADS  Google Scholar 

  86. M. Klaui, M. Laufenberg, L. Heyne, D. Backes, U. Rudiger, C.A.F. Vaz, J.A.C. Bland, L.J. Heyderman, S. Cherifi, A. Locatelli, T.O. Mentes, L. Aballe, Appl. Phys. Lett. 88(23), 232507 (2006). doi:10.1063/1.2209177

    Article  ADS  Google Scholar 

  87. F. Cheynis, A. Masseboeuf, O. Fruchart, N. Rougemaille, J.C. Toussaint, R. Belkhou, P. Bayle-Guillemaud, A. Marty, Phys. Rev. Lett. 102, 107201 (2009). doi:10.1103/PhysRevLett.102.107201

    Article  ADS  Google Scholar 

  88. M. Monti, B. Santos, A. Mascaraque, O. Rodriguez de la Fuente, M.A. Niño, T.O. Menteş, A. Locatelli, K.F. McCarty, J.F. Marco, J. de la Figuera, Phys. Rev. B 85, 020404 (2012). doi:10.1103/PhysRevB.85.020404

  89. J. Raabe, C. Quitmann, C.H. Back, F. Nolting, S. Johnson, C. Buehler, Phys. Rev. Lett. 94, 217204 (2005). doi:10.1103/PhysRevLett.94.217204

    Article  ADS  Google Scholar 

  90. J. Vogel, W. Kuch, M. Bonfim, J. Camarero, Y. Pennec, F. Offi, K. Fukumoto, J. Kirschner, A. Fontaine, S. Pizzini, Appl. Phys. Lett. 82(14), 2299 (2003). doi:10.1063/1.1564876

    Article  ADS  Google Scholar 

  91. A. Krasyuk, A. Oelsner, S.A. Nepijko, A. Kuksov, C.M. Schneider, G. Schönhense, Appl. Phys. A: Mater. Sci. Process. 76, 863 (2003). doi:10.1007/s00339-002-1965-8

    Article  ADS  Google Scholar 

  92. S.B. Choe, Y. Acremann, A. Scholl, A. Bauer, A. Doran, J. Stöhr, H.A. Padmore, Science 304(5669), 420 (2004). doi:10.1126/science.1095068

    Article  ADS  Google Scholar 

  93. F. Nickel, D. Gottlob, I. Krug, H. Doganay, S. Cramm, A. Kaiser, G. Lin, D. Makarov, O. Schmidt, C. Schneider, Ultramicroscopy 130, 54 (2013). doi:10.1016/j.ultramic.2013.03.005

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Locatelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Locatelli, A., Menteş, T.O. (2015). Chemical and Magnetic Imaging with X-Ray Photoemission Electron Microscopy. In: Mobilio, S., Boscherini, F., Meneghini, C. (eds) Synchrotron Radiation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55315-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55315-8_21

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-55314-1

  • Online ISBN: 978-3-642-55315-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics