Microwave-Frequency Mechanical Resonators Operated in the Quantum Limit

  • Aaron O’Connell
  • Andrew N. ClelandEmail author
Part of the Quantum Science and Technology book series (QST)


In this chapter, we describe an experiment in which the quantum ground state of one vibrational mode of a mechanical resonator was reached when the structure was cooled in a dilution refrigerator to \(T \sim 25\) mK. The resonator had a fundamental dilatational resonance frequency in excess of 6 GHz, so once cooled to this temperature, the number of thermal phonons at this frequency is vanishingly small. This achievement is a direct consequence of the high resonance frequencies obtainable with the class of mechanical resonator used in the experiment, which is known as a film bulk acoustic resonator, or FBAR. In this chapter, we begin by briefly describing the mechanics of bulk acoustic resonance and FBAR structures, and we present a simple electrical circuit model for the resonator. Experiments using this type of mechanical resonator in the classical regime are then described. We then introduce the Josephson phase quantum bit (qubit), a device which forms the heart of the measurement scheme used to probe the mechanical resonator in the quantum regime, and describe the coupling mechanism between the qubit and a mechanical resonator. Lastly, we present experimental measurements of the resonator in the quantum regime, where the qubit was used to both prepare and measure non-classical mechanical states in the resonator.


Josephson Junction Microwave Pulse Mechanical Resonator Resonant Response Energy Relaxation Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We would like to thank J. M. Martinis for invaluable experimental support, M. Geller for numerous conversations and calculations, and A. Berube for assistance with resonator fabrication and measurements. The entire membership of the UC Santa Barbara phase qubit group assisted enormously in this experiment and in providing and maintaining the experimental infrastructure. This work was supported by the US National Science Foundation (NSF) under grant DMR-0605818 and by the Intelligence Advanced Research Projects Activity under grant W911NF-04-1-0204. Devices were made at the University of California, Santa Barbara, Nanofabrication Facility, which is part of the NSF-funded US National Nanotechnology Infrastructure Network.


  1. 1.
    J.F. Rosenbaum, Bulk Acoustic Wave Theory and Devices (Artech House, UK, 1988)Google Scholar
  2. 2.
    J.D.I. Larson, P.D. Bradley, S. Warternberg, R.C. Ruby (IEEE, 2000), pp. 863–868Google Scholar
  3. 3.
    R.C. Ruby, P. Bradley, Y. Oshmyansky, A. Chien, J.D.I. Larson (IEEE, 2001), pp. 813–821Google Scholar
  4. 4.
    A.D. O’Connell, M. Hofheinz, M. Ansmann, R.C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J.M. Martinis, A.N. Cleland, Nature 464, 697 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    M.A. Dubois, P. Muralt, Appl. Phys. Lett. 74, 20 (1999)CrossRefGoogle Scholar
  6. 6.
    K. Nam, Y. Park, B. Ha, D. Shim, I. Song, J. Pak, G. Park, J. Korean Phys. Soc. 47, S309 (2005)CrossRefGoogle Scholar
  7. 7.
    J.M. Martinis, Quant. Inf. Process. 8, 81 (2009)CrossRefGoogle Scholar
  8. 8.
    M. Tinkham, Introduction to Superconductivity (McGraw-Hill, US, 1996)Google Scholar
  9. 9.
    B.D. Josephson, Phys. Lett. 1, 251 (1962)ADSCrossRefzbMATHGoogle Scholar
  10. 10.
    A.O. Caldeira, A. Legget, Phys. Rev. Lett. 46, 211 (1981)ADSCrossRefGoogle Scholar
  11. 11.
    M.H. Devoret, J.M. Martinis, J. Clarke, Phys. Rev. Lett. 55, 1908 (1985)ADSCrossRefGoogle Scholar
  12. 12.
    A.J. Leggett, S. Chakravarty, A.T. Dorsey, M.P.A. Fisher, A. Garg, W. Zwerger, Rev. Mod. Phys. 59, 1 (1987)ADSCrossRefGoogle Scholar
  13. 13.
    J. Clarke, A.N. Cleland, M.H. Devoret, D. Esteve, J.M. Martinis, Science 239, 992 (1988)ADSCrossRefGoogle Scholar
  14. 14.
    J.E. Mooij, T.P. Orlando, L. Levitov, L. Tian, C.H. van der Wal, S. Lloyd, Science 285, 1036 (1999)CrossRefGoogle Scholar
  15. 15.
    C.H. van der Wal, A.C.J. ter Haar, F.K. Wilhelm, R.N. Schouten, C.J.P.M. Harmans, T.P. Orlando, S. Lloyd, J.E. Mooij, Science 290, 773 (2000)ADSCrossRefGoogle Scholar
  16. 16.
    J.M. Martinis, S. Nam, J. Aumentado, C. Urbina, Phys. Rev. Lett. 89, 117901 (2002)ADSCrossRefGoogle Scholar
  17. 17.
    I. Chiorescu, Y. Nakamura, C.J.P.M. Harmans, J.E. Mooij, Science 299, 1869 (2003)ADSCrossRefGoogle Scholar
  18. 18.
    K.W. Lehnert, K. Bladh, L.F. Spietz, D. Gunnarsson, D.I. Schuster, P. Delsing, R.J. Schoelkopf, Phys. Rev. Lett. 90, 027002 (2003)ADSCrossRefGoogle Scholar
  19. 19.
    Y.A. Pashkin, T. Yamamoto, O. Astafiev, Y. Nakamura, D.V. Averin, J.S. Tsai, Nature 421, 823 (2003)ADSCrossRefGoogle Scholar
  20. 20.
    T. Yamamoto, Y.A. Pashkin, O. Astafiev, Y. Nakamura, J.S. Tsai, Nature 425, 941 (2003)ADSCrossRefGoogle Scholar
  21. 21.
    I. Chiorescu, P. Bertet, K. Semba, Y. Nakamura, C.J.P.M. Harmans, J.E. Mooij, Nature 431, 159 (2004)ADSCrossRefGoogle Scholar
  22. 22.
    K.B. Cooper, M. Steffen, R. McDermott, R.W. Simmonds, S. Oh, D.A. Hite, D.P. Pappas, J.M. Martinis, Phys. Rev. Lett. 93, 180401 (2004)ADSCrossRefGoogle Scholar
  23. 23.
    R.W. Simmonds, K.M. Lang, D.A. Hite, S. Nam, D.P. Pappas, J.M. Martinis, Phys. Rev. Lett. 93, 077003 (2004)ADSCrossRefGoogle Scholar
  24. 24.
    A. Wallraff, D.I. Schuster, A. Blais, L. Frunzio, R.S. Huang, J. Majer, S. Kumar, S.M. Girvin, R.J. Schoelkopf, Nature 431, 162 (2004)ADSCrossRefGoogle Scholar
  25. 25.
    H. Goldstein, C. Poole, J. Safko, Classical Mechanics (Addison Wesley, Boston, 2002)Google Scholar
  26. 26.
    G. Wendin, V.S. Shumeiko (2005), arXiv:cond-mat/0508729v1
  27. 27.
    M.R. Geller, A.N. Cleland, Phys. Rev. A 71, 032311 (2005)ADSCrossRefGoogle Scholar
  28. 28.
    E. Lucero, M. Hofheinz, M. Ansmann, R.C. Bialczak, N. Katz, M. Neeley, A.D. O’Connell, H. Wang, A.N. Cleland, J.M. Martinis, Phys. Rev. Lett. 100(24), 247001 (2008)ADSCrossRefGoogle Scholar
  29. 29.
    E. Merzbacher, Quantum Mechanics (Wiley, New York, 1998)Google Scholar
  30. 30.
    J.J. Sakurai, Modern Quantum Mechanics (Addison Wesley, Boston, 1994)Google Scholar
  31. 31.
    M. Steffen, J.M. Martinis, I.L. Chuang, Phys. Rev. B. 68, 224518 (2003)ADSCrossRefGoogle Scholar
  32. 32.
    A.N. Cleland, M.R. Geller, Phys. Rev. Lett. 93, 070501 (2004)ADSCrossRefGoogle Scholar
  33. 33.
    A. Sornborger, A.N. Cleland, M.R. Geller, Phys. Rev. A 70, 052315 (2004)ADSCrossRefGoogle Scholar
  34. 34.
    N.F. Ramsey, Phys. Rev. 78, 695 (1950)ADSCrossRefGoogle Scholar
  35. 35.
    M. Hofheinz, E.M. Weig, M. Ansmann, R.C. Bialczak, E. Lucero, M. Neeley, A.D. O’Connell, H. Wang, J.M. Martinis, A.N. Cleland, Nature 454, 310 (2008)ADSCrossRefGoogle Scholar
  36. 36.
    M. Hofheinz, H. Wang, M. Ansmann, R.C. Bialczak, E. Lucero, M. Neeley, A.D. O’Connell, D. Sank, J. Wenner, J.M. Martinis, A.N. Cleland, Nature 459(7246), 546 (2009)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.University of CaliforniaSanta BarbaraUSA

Personalised recommendations