Optomechanical Crystal Devices

  • Amir H. Safavi-NaeiniEmail author
  • Oskar Painter
Part of the Quantum Science and Technology book series (QST)


We present the basic ideas and techniques utilized in recent work on optomechanical crystals. Optomechanical crystals are nanofabricated cavity optomechanical systems where the confinement of light and motion is obtained by nanopatterning periodic structures in thin-films. In this chapter we start from a basic review of the properties of optical and elastic waves in nanostructures, before introducing the properties and design of periodic structures. After reviewing fabrication and characterization methods, experimental results in 1D and 2D systems are presented.


Mechanical Mode Transverse Electric Electromagnetically Induce Transparency Band Diagram Phononic Crystal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to acknowledge the significant contributions to this work by Jasper Chan, Matt Eichenfield, Jeff Hill, Simon Gröblacher, Thiago Alegre, Alex Krause, Sean Meenehan, and Justin Cohen. The work was supported by the DARPA ORCHID and MESO programs, the Institute for Quantum Information and Matter, an NSF Physics Frontiers Center with support of the Gordon and Betty Moore Foundation, and the Kavli Nanoscience Institute at Caltech. ASN gratefully acknowledges support from NSERC.


  1. 1.
    A.H. Safavi-Naeini, O. Painter, New J. Phys. 13, 013017 (2011)ADSCrossRefGoogle Scholar
  2. 2.
    D. Chang, A.H. Safavi-Naeini, M. Hafezi, O. Painter, New J. Phys. 13, 023003 (2011)ADSCrossRefGoogle Scholar
  3. 3.
    G. Heinrich, M. Ludwig, J. Qian, B. Kubala, F. Marquardt, Phys. Rev. Lett. 107(4), 043603 (2011)ADSCrossRefGoogle Scholar
  4. 4.
    M. Schmidt, M. Ludwig, F. Marquardt, New J. Phys. 14(12), 125005 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    M. Schmidt, V. Peano, F. Marquardt (2013), arXiv:1311.7095
  6. 6.
    A.H. Safavi-Naeini, T.P.M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J.T. Hill, D. Chang, O. Painter, Nature 472, 69 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    J. Chan, T.P.M. Alegre, A.H. Safavi-Naeini, J.T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, O. Painter, Nature 478, 89 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    A.H. Safavi-Naeini, J. Chan, J.T. Hill, T.P.M. Alegre, A. Krause, O. Painter, Phys. Rev. Lett. 108(3), 033602 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    J.T. Hill, A.H. Safavi-Naeini, J. Chan, O. Painter, Nat. Commun. 3, 1196 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    J. Chan, A.H. Safavi-Naeini, J.T. Hill, S. Meenehan, O. Painter, Appl. Phys. Lett. 101(8), 081115 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    A.H. Safavi-Naeini, J. Chan, J.T. Hill, S. Groeblacher, H. Miao, Y. Chen, M. Aspelmeyer, O. Painter, New J. Phys 15(3), 035007 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    COMSOL Multiphysics 3.5,
  13. 13.
    S.G. Johnson, J.D. Joannopoulos, Opt. Express 8(3), 173 (2001)ADSCrossRefGoogle Scholar
  14. 14.
    J.V. Bladel, Electromagnetic Fields, 2nd edn. (IEEE Press, Wiley-Interscience, 2007)CrossRefGoogle Scholar
  15. 15.
    S. Haroche, J.M. Raimond, Exploring the Quantum: Atoms, Cavities, and Photons (Oxford University Press, USA, 2006)CrossRefGoogle Scholar
  16. 16.
    C. Kittel, Introduction to Solid State Physics (Wiley, New Jersey, 2005)Google Scholar
  17. 17.
    S. John, Phys. Rev. Lett. 58(23), 2486 (1987)ADSCrossRefGoogle Scholar
  18. 18.
    E. Yablonovitch, T. Gmitter, J.P. Harbison, R. Bhat, Appl. Phys. Lett. 51, 2222 (1987)ADSCrossRefGoogle Scholar
  19. 19.
    M.S. Kushwaha, P. Halevi, L. Dobrzynski, B. Djafari-Rouhani, Phys. Rev. Lett. 71(13), 2022 (1993)ADSCrossRefGoogle Scholar
  20. 20.
    M. Sigalas, E. Economou, J. Sound Vib. 158(2), 377 (1992)ADSCrossRefGoogle Scholar
  21. 21.
    J. Joannopoulos, S. Johnson, J. Winn, R. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, 2008)Google Scholar
  22. 22.
    B.A. Auld, Acoustic fields and waves in solids, vol. 1 (Wiley, New York, 1973)Google Scholar
  23. 23.
    D. Marcuse, Theory of dielectric optical waveguides (Access Online via Elsevier, Amsterdam, 1974)Google Scholar
  24. 24.
    K. Graff, Wave Motion in Elastic Solids (Dover Publications, New York, 1975)Google Scholar
  25. 25.
    A. Yariv, P. Yeh, Optical waves in crystals, vol. 5 (Wiley, New York, 1984)Google Scholar
  26. 26.
    A.N. Cleland, Foundations of Nanomechanics: from Solid-State Theory to Device Applications (Springer, Heidelberg, 2003)Google Scholar
  27. 27.
    A. Fallahkhair, K. Li, T. Murphy, J. Lightwave Technol. 26(11), 1423 (2008)ADSCrossRefGoogle Scholar
  28. 28.
    A.N. Cleland, M.L. Roukes, Nature 392, 160 (1998)ADSCrossRefGoogle Scholar
  29. 29.
    M.D. Chabot, J. Moreland, L. Gao, S.H. Liou, C. Miller, J. Microelectromech. Syst. 14(5), 1118 (2005)Google Scholar
  30. 30.
    P.H. Kim, C. Doolin, B.D. Hauer, A.J.R. MacDonald, M.R. Freeman, P.E. Barclay, J.P. Davis, Appl. Phys. Lett. 102(5), 053102 (2013)ADSCrossRefGoogle Scholar
  31. 31.
    J.S. Foresi, P.R. Villeneuve, J. Ferrera, E.R. Thoen, G. Steinmeyer, S. Fan, J.D. Joannopoulos, L.C. Kimerling, H.I. Smith, E.P. Ippen, Nature 390(6656), 143 (1997)ADSCrossRefGoogle Scholar
  32. 32.
    C. Sauvan, P. Lalanne, J.P. Hugonin, Phys. Rev. B 71(16), 165118 (2005)ADSCrossRefGoogle Scholar
  33. 33.
    P. Barclay, K. Srinivasan, O. Painter, Opt. Express 13, 801 (2005)ADSCrossRefGoogle Scholar
  34. 34.
    L.D. Haret, T. Tanabe, E. Kuramochi, M. Notomi, Opt. Express 17(23), 21108 (2009)CrossRefGoogle Scholar
  35. 35.
    K. Schwab, E.A. Henriksen, J.M. Worlock, M.L. Roukes, Nature 404(6781), 974 (2000)ADSCrossRefGoogle Scholar
  36. 36.
    S.M. Meenehan et al. Thermalization properties at mK temperatures of a nanoscale optomechanical resonator with acoustic-bandgap shield (2014), arXiv:1403.3703
  37. 37.
    M. Eichenfield, J. Chan, R. Camacho, K. Vahala, O. Painter, Nature 462(7269), 78 (2009)ADSCrossRefGoogle Scholar
  38. 38.
    M. Eichenfield, J. Chan, A.H. Safavi-Naeini, K.J. Vahala, O. Painter, Opt. Express 17(22), 20078 (2009)ADSCrossRefGoogle Scholar
  39. 39.
    A.H. Safavi-Naeini, O. Painter, Opt. Express 18(14), 14926 (2010)ADSCrossRefGoogle Scholar
  40. 40.
    T.P.M. Alegre, A. Safavi-Naeini, M. Winger, O. Painter, Opt. Express 19, 5658 (2011)ADSCrossRefGoogle Scholar
  41. 41.
    P.L. Yu, K. Cicak, N. Kampel, Y. Tsaturyan, T. Purdy, R. Simmonds, C. Regal, (2013). arXiv:1312.0962
  42. 42.
    A.H. Safavi-Naeini, J.T. Hill, S. Meenehan, J. Chan, S. Groeblacher, O. Painter, (2014), arXiv:1401.1493
  43. 43.
    K. Srinivasan, O. Painter, Opt. Express 10(15), 670 (2002)ADSCrossRefGoogle Scholar
  44. 44.
    Y. Akahane, T. Asano, B.S. Song, S. Noda, Nature 425(6961), 944 (2003)ADSCrossRefGoogle Scholar
  45. 45.
    B.S. Song, S. Noda, T. Asano, Y. Akahane, Nat. Mater. 4(3), 207 (2005)ADSCrossRefGoogle Scholar
  46. 46.
    M. Borselli, T.J. Johnson, O. Painter, App. Phys. Lett. 88, 131114 (2006)ADSCrossRefGoogle Scholar
  47. 47.
    J. Chan, Laser cooling of an optomechanical crystal resonator to its quantum ground state of motion, Ph.D. thesis, California Institute of Technology 2012Google Scholar
  48. 48.
    A.R. Md Zain, N.P. Johnson, M. Sorel, R.M. De La Rue, Opt. Express 16(16), 12084 (2008).Google Scholar
  49. 49.
    M. Notomi, E. Kuramochi, H. Taniyama, Opt. Express 16(15), 11095 (2008)ADSCrossRefGoogle Scholar
  50. 50.
    J. Chan, M. Eichenfield, R. Camacho, O. Painter, Opt. Express 17(5), 3802 (2009)ADSCrossRefGoogle Scholar
  51. 51.
    P.B. Deotare, M.W. McCutcheon, I.W. Frank, M. Khan, M. Loncar, Appl. Phys. Lett. 94(12), 121106 (2009)ADSCrossRefGoogle Scholar
  52. 52.
    S.G. Johnson, M. Ibanescu, M.A. Skorobogatiy, O. Weisberg, J.D. Joannopoulos, Y. Fink, Phys. Rev. E 65(6), 066611 (2002)ADSCrossRefMathSciNetGoogle Scholar
  53. 53.
    M.J. Burek, N.P. de Leon, B.J. Shields, B.J.M. Hausmann, Y. Chu, Q. Quan, A.S. Zibrov, H. Park, M.D. Lukin, M. Lonar, Nano Lett. 12(12), 6084 (2012)ADSCrossRefGoogle Scholar
  54. 54.
    L. Li, M. Trusheim, O. Gaathon, K. Kisslinger, C.J. Cheng, M. Lu, D. Su, X. Yao, H.C. Huang, I. Bayn, J. Vac. Sci. Technol., B 31(6), 06FF01 (2013)Google Scholar
  55. 55.
    P. Rath, S. Khasminskaya, C. Nebel, C. Wild, W.H. Pernice, Nat. Commun. 4, 1690 (2013)ADSCrossRefGoogle Scholar
  56. 56.
    M. Radulaski, T.M. Babinec, S. Buckley, A. Rundquist, J. Provine, K. Alassaad, G. Ferro, J. Vuckovic, Opt. Express 21(26), 32623 (2013)ADSCrossRefGoogle Scholar
  57. 57.
    J. Cardenas, M. Zhang, C.T. Phare, S.Y. Shah, C.B. Poitras, B. Guha, M. Lipson, Opt. Express 21(14), 16882 (2013)ADSCrossRefGoogle Scholar
  58. 58.
    C.P. Michael, M. Borselli, T.J. Johnson, C. Chrystal, O. Painter, Opt. Express 15, 4745 (2007)ADSCrossRefGoogle Scholar
  59. 59.
    B.D. Hauer, P.H. Kim, C. Doolin, A.J. MacDonald, H. Ramp, J.P. Davis, (2014), arXiv:1401.5482
  60. 60.
    J. Thompson, T. Tiecke, N. de Leon, J. Feist, A. Akimov, M. Gullans, A. Zibrov, V. Vuleti, M. Lukin, Science 340(6137), 1202 (2013)ADSCrossRefGoogle Scholar
  61. 61.
    A.H. Safavi-Naeini, S. Groblacher, J.T. Hill, J. Chan, M. Aspelmeyer, O. Painter, Nature 500(7461), 185 (2013)ADSCrossRefGoogle Scholar
  62. 62.
    S. Groeblacher, J.T. Hill, A.H. Safavi-Naeini, J. Chan, O. Painter, Appl. Phys. Lett. 103(18), 181104 (2013)ADSCrossRefGoogle Scholar
  63. 63.
    M. Fleischhauer, A. Imamoglu, J.P. Marangos, Rev. Mod. Phys. 77(2), 633 (2005)ADSCrossRefGoogle Scholar
  64. 64.
    S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, T.J. Kippenberg, Science 330, 1520 (2010)ADSCrossRefGoogle Scholar
  65. 65.
    E. Gavartin, R. Braive, I. Sagnes, O. Arcizet, A. Beveratos, T.J. Kippenberg, I. Robert-Philip, Phys. Rev. Lett. 106(20), 203902 (2011)ADSCrossRefGoogle Scholar
  66. 66.
    J. Gomis-Bresco, D. Navarro-Urrios, M. Oudich, S. El-Jallal, A. Griol, D. Puerto, E. Chavez, Y. Pennec, D. Djafari-Rouhani, F. Alzina, A. Martnez, C.M. Sotomayor Torres, (2014), arXiv:1401.1691
  67. 67.
    S.J.M. Habraken, K. Stannigel, M.D. Lukin, P. Zoller, P. Rabl, New J. Phys. 14(11), 115004 (2012)ADSCrossRefMathSciNetGoogle Scholar
  68. 68.
    A. Tomadin, S. Diehl, M.D. Lukin, P. Rabl, P. Zoller, Phys. Rev. A 86(3), 033821 (2012)ADSCrossRefGoogle Scholar
  69. 69.
    M. Ludwig, F. Marquardt, Phys. Rev. Lett. 111, 073603 (2013)ADSCrossRefGoogle Scholar
  70. 70.
    P. Rabl, Phys. Rev. Lett. 107(6), 63601 (2011)ADSCrossRefGoogle Scholar
  71. 71.
    A. Nunnenkamp, K. Borkje, S. Girvin, Phys. Rev. Lett. 107(6), 63602 (2011)ADSCrossRefGoogle Scholar
  72. 72.
    M. Ludwig, A.H. Safavi-Naeini, O. Painter, F. Marquardt, Phys. Rev. Lett. 109(6), 063601 (2012)ADSCrossRefGoogle Scholar
  73. 73.
    K. Stannigel, P. Komar, S.J.M. Habraken, S.D. Bennett, M.D. Lukin, P. Zoller, P. Rabl, Phys. Rev. Lett. 109, 013603 (2012)ADSCrossRefGoogle Scholar
  74. 74.
    M. Davanco, J. Chan, A.H. Safavi-Naeini, O. Painter, K. Srinivasan, Opt. Express 20(22), 24394 (2012)ADSCrossRefGoogle Scholar
  75. 75.
    H. Sekoguchi, Y. Takahashi, T. Asano, S. Noda, Opt. Express 22(1), 916 (2014)ADSCrossRefGoogle Scholar
  76. 76.
    J. Bochmann, A. Vainsencher, D.D. Awschalom, A.N. Cleland, Nat. Phys. (2013)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.California Institute of TechnologyPasadenaUSA
  2. 2.ETH ZürichZürichSwitzerland
  3. 3.Stanford UniversityStanfordUSA
  4. 4.The Max Planck Institute for the Science of Light (MPL)ErlangenGermany

Personalised recommendations