Advertisement

The Water Efficient Maize for Africa Project as an Example of a Public–Private Partnership

  • Sylvester Oikeh
  • Dianah Ngonyamo-MajeeEmail author
  • Stephen I. N. Mugo
  • Kingstone Mashingaidze
  • Vanessa Cook
  • Michael Stephens
Chapter
Part of the Biotechnology in Agriculture and Forestry book series (AGRICULTURE, volume 67)

Abstract

The Water Efficient Maize for Africa (WEMA) project was started in 2008 with the main objective of developing drought tolerant white hybrid maize for smallholder farmers of sub-Saharan Africa (SSA) that yields at least 20 % more under drought conditions compared to commercial check hybrids. To achieve this, a combination of breeding and biotech approaches are followed to introduce drought tolerance in African maize varieties. To protect the yield benefit, the insect protection trait (Bt) was added in the year 2011. This work is conducted through a public–private partnership led by the African Agricultural Technology Foundation based in Kenya with collaborating partners that include the International Maize and Wheat Improvement Center, Monsanto Company, and five National Agricultural Research Systems for Tanzania, Kenya, Mozambique, Uganda, and the Republic of South Africa. Among the key achievements for the first 5 years of the project (Phase 1) include the successful running of confined field trials for transgenic maize varieties in Kenya, Uganda, and South Africa and the submission of conventional drought tolerant maize hybrids into the national performance trials in Kenya. The next Phase 2 of the program (2013–2017) involves the deployment of the WEMA products. The first WEMA conventional drought tolerant maize hybrids are scheduled to be released to farmers in the year 2013. These are WEMA hybrids that outperformed some of the best local check hybrids on the market. Next for release in 2016/2017, subject to receiving appropriate regulatory approvals, will be the transgenic products of WEMA which will carry two biotech traits, Bt insect protection trait and the drought tolerance trait from the cold shock protein B (cspB). The overall impact of WEMA project will be the availability of both transgenic and non-transgenic drought tolerant maize hybrids for use by smallholder farmers in SSA.

Keywords

Drought Stress Drought Tolerance Late Embryogenesis Abundant Smallholder Farmer Private Partnership 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We wish to acknowledge the WEMA team members from all the partners (AATF, CIMMYT, Monsanto, and the NARs) who are working hard to make this public–private partnership successful. We would also like to acknowledge the many people who are not directly part of WEMA, but are contributing immensely to this effort, and The Bill and Melinda Gates Foundation, the Howard G. Buffett Foundation, and USAID for funding support. In particular we would like to thank BASF Plant Sciences department for their contributions to the drought traits screening pipeline through the collaborative program with Monsanto and the following individuals: Dr. Mark Lawson (Monsanto), Dr. William R. Reeves (Monsanto), Mark Edge (Monsanto), Mrs. Nancy Muchiri (AATF), Dr. Francis Nang’ayo (AATF), Dr. Gospel Omanya (AATF), and Mr. Alhaji Tejan-Cole (AATF) for their contributions to this manuscript.

References

  1. Banziger M, Diallo AO (2001) Stress-tolerant maize for farmers in sub-Saharan Africa. In: International Maize and Wheat Improvement Center (CIMMYT), The Maize program. Maize research highlights 1999-2000, CIMMYT, Mexico, D.F, pp 1–8Google Scholar
  2. Bhatnagar-Mathur P, Valdez V, Sharma KK (2008) Transgenic approaches for abiotic stress tolerance in plants: retrospect and prospects. Plant Cell Rep 27:411–424PubMedCrossRefGoogle Scholar
  3. Castiglioni P, Warner D, Bensen RJ, Anstrom DC, Harrison J, Stoecker M, Abad M, Kumar G, Salvador S, D’Ordine R, Navarro S, Back S, Fernandes M, Targolli J, Dasgupta S, Bonin C, Luethy MH, Heard JE (2008) Bacterial RNA chaperones confer abiotic stress tolerance in plants and improved grain yield in maize under water-limited conditions. Plant Physiol 147:446–455PubMedCentralPubMedCrossRefGoogle Scholar
  4. Chaves MM, Maroco JP, Pereira JS (2003) Understanding plant responses to drought from genes to the whole plant. Funct Plant Biol 30:239–264CrossRefGoogle Scholar
  5. Food and Agriculture Organization of the United Nations (FAO) (2000) FAO Statement on Biotechnology. http://www.fao.org/biotech/stat.asp
  6. Forum for Agricultural Research in Africa (FARA) (2009) Patterns of change in maize production in Africa: implications for maize policy development. http://www.fara-africa.org/media/uploads/library/docs/policy_briefs/patterns_of_change_in_maize_production_in_africa.pdf
  7. Heisey PW, Edmeades GO (1999) Maize production in drought-stressed environments: technical options and research resource allocation. World maize facts and trends 1997/98. CIMMYT, México, D.F., pp 1–36Google Scholar
  8. Kolodyazhnaya YS, Kutsokon NK, Levenko BA, Syutikova OS, Rakhmetov DB, Kochetov AV (2009) Transgenic plants tolerant to abiotic stresses. Cytol Genet 43(2):132–149CrossRefGoogle Scholar
  9. Lobell DB, Banziger M, Magorokosho C, Vivek B (2011) Nonlinear heat effects on African maize as evidenced by historical yield trials. Nat Clim Change 1:42–45. doi: 10.1038/nclimate1043 CrossRefGoogle Scholar
  10. Noojin L (2006) Factors that influence famine in sub-Saharan African Countries. http://www.as.ua.edu/ant/bindon/ant476/papers/Noojin.pdf
  11. Sachs JD (2005) The end of poverty: economic possibilities for our time. The Earth Institute at Columbia University, New YorkGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Sylvester Oikeh
    • 1
  • Dianah Ngonyamo-Majee
    • 2
    Email author
  • Stephen I. N. Mugo
    • 3
  • Kingstone Mashingaidze
    • 4
  • Vanessa Cook
    • 5
  • Michael Stephens
    • 2
  1. 1.African Agricultural Technology Foundation (AATF)NairobiKenya
  2. 2.Monsanto CompanySt LouisUSA
  3. 3.International Maize and Wheat Improvement Center (CIMMYT)NairobiKenya
  4. 4.Agricultural Research Council (ARC), Grain Crops InstitutePotchefstroomSouth Africa
  5. 5.Cook-Marten Consulting LLCSt. LouisUSA

Personalised recommendations