Skip to main content

Real-Time Multiview Human Body Tracking Using GPU-Accelerated PSO

  • Conference paper
  • First Online:
Parallel Processing and Applied Mathematics (PPAM 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8384))

Abstract

This paper presents our approach to 3D model-based human motion tracking using a GPU-accelerated particle swarm optimization. The tracking involves configuring the 3D human model in the pose described by each particle and then rasterizing it in each particle’s 2D plane. In our implementation, we launch one independent thread for each column of each 2D plane. Such a parallel algorithm exhibits the level of parallelism that allows us to effectively utilize the GPU resources. Owing to such task decomposition the tracking of the full human body can be performed at rates of 15 frames per second. The GPU achieves an average speedup of 7.5 over the CPU. The speedup that achieves the GPU over CPU grows with the number of the particles. For marker-less motion capture system consisting of four calibrated and synchronized cameras, the efficiency comparisons were conducted on four CPU cores and four GTX GPUs on two cards.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Box, G.E.P., Muller, M.E.: A note on the generation of random normal deviates. Ann. Math. Stat. 29(2), 610–611 (1958)

    Article  MATH  Google Scholar 

  2. Brown, J., Capson, D.: Framework for 3d model-based visual tracking using a GPU-accelerated particle filter. IEEE Trans. Vis. Comput. Graph. 18(1), 68–80 (2012)

    Article  Google Scholar 

  3. Castano-Diez, D., Moser, D., Schoenegger, A., Pruggnaller, S., Frangakis, A.S.: Performance evaluation of image processing algorithms on the GPU. J. Struct. Biol. 164(1), 153–160 (2008)

    Article  Google Scholar 

  4. Deutscher, J., Blake, A., Reid, I.: Articulated body motion capture by annealed particle filtering. In: IEEE International Conference on Pattern Recognition, pp. 126–133 (2000)

    Google Scholar 

  5. Hansen, N., Auger, A., Ros, R., Finck, S., Pošík, P.: Comparing results of 31 algorithms from the black-box optimization benchmarking BBOB-2009. In: Genetic and Evolutionary Computation Conference. GECCO’10, pp. 1689–1696. ACM (2010)

    Google Scholar 

  6. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, pp. 1942–1948. IEEE Press, Piscataway, NJ (1995)

    Google Scholar 

  7. Krzeszowski, T., Kwolek, B., Wojciechowski, K.: GPU-accelerated tracking of the motion of 3d articulated figure. In: Bolc, L., Tadeusiewicz, R., Chmielewski, L.J., Wojciechowski, K. (eds.) ICCVG 2010, Part I. LNCS, vol. 6374, pp. 155–162. Springer, Heidelberg (2010)

    Google Scholar 

  8. Krzeszowski, T., Michalczuk, A., Kwolek, B., Switonski, A., Josinski, H.: Gait recognition based on marker-less 3D motion capture. In: 10th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), pp. 232–237 (2013)

    Google Scholar 

  9. Kwolek, B., Krzeszowski, T., Wojciechowski, K.: Swarm intelligence based searching schemes for articulated 3d body motion tracking. In: Blanc-Talon, J., Kleihorst, R., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2011. LNCS, vol. 6915, pp. 115–126. Springer, Heidelberg (2011)

    Google Scholar 

  10. Laguna-Sanchez, G.A., Olguin-Carbajal, M., Cruz-Cortes, N., Barron-Fernandez, R., Alvarez-Cedillo, J.A.: Comparative study of parallel variants for a particle swarm optimization. J. Appl. Res. Technol. 7(3), 292–309 (2009)

    Google Scholar 

  11. Lee, V.W., Kim, C., Chhugani, J., Deisher, M., Kim, D., Nguyen, A.D., Satish, N., Smelyanskiy, M., Chennupaty, S., Hammarlund, P., Singhal, R., Dubey, P.: Debunking the 100x GPU vs. CPU myth: an evaluation of throughput computing on CPU and GPU. In: Proceedings of the 37th Annual International Symposium on Computer Architecture. ISCA’10, pp. 451–460. ACM, New York, NY, USA (2010)

    Google Scholar 

  12. Mussi, L., Ivekovic, S., Cagnoni, S.: Markerless articulated human body tracking from multi-view video with GPU-PSO. In: Tempesti, G., Tyrrell, A.M., Miller, J.F. (eds.) ICES 2010. LNCS, vol. 6274, pp. 97–108. Springer, Heidelberg (2010)

    Google Scholar 

  13. Pulli, K., Baksheev, A., Kornyakov, K., Eruhimov, V.: Real-time computer vision with OpenCV. Commun. ACM 55(6), 61–69 (2012)

    Article  Google Scholar 

  14. Solomon, S., Thulasiraman, P., Thulasiram, R.: Collaborative multi-swarm PSO for task matching using graphics processing units. In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, pp. 1563–1570 (2011)

    Google Scholar 

  15. Wu, C., Aghajan, H.: Human pose estimation in vision networks via distributed local processing and nonparametric belief propagation. In: Blanc-Talon, J., Bourennane, S., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2008. LNCS, vol. 5259, pp. 1006–1017. Springer, Heidelberg (2008)

    Google Scholar 

  16. Zhou, Y., Tan, Y.: GPU-based parallel particle swarm optimization. In: IEEE Congress on Evolutionary Computation. CEC’09, pp. 1493–1500 (2009)

    Google Scholar 

Download references

Acknowledgment

This work has been supported by the National Science Center (NCN) within the research project N N516 483240.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bogdan Kwolek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rymut, B., Kwolek, B. (2014). Real-Time Multiview Human Body Tracking Using GPU-Accelerated PSO. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds) Parallel Processing and Applied Mathematics. PPAM 2013. Lecture Notes in Computer Science(), vol 8384. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55224-3_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55224-3_43

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-55223-6

  • Online ISBN: 978-3-642-55224-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics