Skip to main content

Influence of a Topology of a Spring Network on its Ability to Learn Mechanical Behaviour

  • Conference paper
  • First Online:
Parallel Processing and Applied Mathematics (PPAM 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8384))

  • 1561 Accesses

Abstract

We discuss how the topology of the spring system/network affects its ability to learn a desired mechanical behaviour. To ensure such a behaviour, physical parameters of springs of the system are adjusted by an appropriate gradient descent learning algorithm. We find the betweenness centrality measure particularly convenient to describe topology of the spring system structure with the best mechanical properties. We apply our results to refine an algorithm generating the structure of a spring network. We also present numerical results confirming our statements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson, B.D.O., Belhumeur, P.N., Morse, A.S., Eren, T.: A framework for maintaining formations based on rigidity. In: Proceedings of the IFAC World Congress, Barcelona (2002)

    Google Scholar 

  2. Chirikjian, G.S., Jernigan, R.L., Moon, K.K.: Elastic models of conformational transitions in macromolecules. J. Mol. Graph. Model. 21, 151–160 (2002)

    Article  Google Scholar 

  3. Connelly, R.: Rigidity and energy. Invent. Math. 66, 11–33 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  4. Czoków, M., Schreiber, T.: Adaptive spring systems for shape programming. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010, Part II. LNCS, vol. 6114, pp. 420–427. Springer, Heidelberg (2010)

    Google Scholar 

  5. Czoków, M., Schreiber, T.: Structure searching for adaptive spring networks for shape programming in 3D. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012, Part II. LNCS, vol. 7268, pp. 207–215. Springer, Heidelberg (2012)

    Google Scholar 

  6. Dokholyan, N.V., Karplus, M., Paci, E., Vendruscolo, M.: A small-world view of the amino acids that play a key role in protein folding. Phys. Rev. E 65, 061910 (2002)

    Article  Google Scholar 

  7. Greiner, W.: Classical Mechanics: Systems of Particles and Hamiltonian Dynamics. Classical Theoretical Physics. Springer, New York (2010)

    Book  Google Scholar 

  8. Gusev, A.A.: Finite element mapping for spring network representations of the mechanics of solids. Phys. Rev. Lett. 93, 034302 (2004)

    Article  Google Scholar 

  9. Kanellos, A.: Topological self-organisation: using a particle-spring system simulation to generate structural space-filling lattices. Masters thesis, UCL (2007)

    Google Scholar 

  10. Kilian, A., Ochsendorf, J.: Particle-spring systems for structural form finding. J. IASS 46, 77–84 (2005)

    Google Scholar 

  11. Ostoja-Starzewski, M.: Lattice models in micromechanics. Appl. Mech. Rev. 55, 35–60 (2002)

    Article  Google Scholar 

  12. Trawinski, B., Smetek, M., Telec, Z., Lasota, T.: Nonparametric statistical analysis for multiple comparison of machine learning regression algorithms. Int. J. Appl. Math. Comput. Sci. 22(4), 867–882 (2012)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maja Czoków .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Czoków, M., Miękisz, J. (2014). Influence of a Topology of a Spring Network on its Ability to Learn Mechanical Behaviour. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds) Parallel Processing and Applied Mathematics. PPAM 2013. Lecture Notes in Computer Science(), vol 8384. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55224-3_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55224-3_39

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-55223-6

  • Online ISBN: 978-3-642-55224-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics