Skip to main content

Technical Prerequisites for Whole-Body MRI Screening

  • Chapter
  • First Online:
Whole-body MRI Screening
  • 1411 Accesses

Abstract

Magnetic resonance imaging (MRI) examinations have traditionally been confined to regions of the body that are covered by the field of view of the MR imager, typically less than 50 cm in the long axis. This coverage permits imaging of an individual organ or a single body region. There are clinical situations, however, in which imaging of a larger part of the body is desirable – diagnostic evaluation of the spine or MR angiography (MRA) of the arteries of the pelvis and legs, for example. The demands are even greater when it comes to whole-body MRI screening. Screening examinations may require evaluation of the entire vascular system (whole-body MRA) or of the entire body volume (whole-body MRI). Before imaging of the entire body was possible, strategies for extending the effective imaging range first had to be devised. This was accomplished by developing multistation techniques, which involve the serial acquisition of individual body regions. The individual datasets overlap slightly and are combined to generate a composite whole-body image. Further technical advances have since enabled the acquisition of seamless three-dimensional (3D) whole-body MRI datasets using continuous table movement techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barkhausen J, Quick HH, Lauenstein T, Goyen M, Ruehm SG, Laub G, Debatin JF, Ladd ME (2001) Whole-body MR imaging in 30 seconds with real-time true FISP and a continuously rolling table platform: feasibility study. Radiology 220:252–256

    Article  CAS  PubMed  Google Scholar 

  • Baumann T, Ludwig U, Pache G, Fautz HP, Kotter E, Langer M, Schaefer O (2010) Continuously moving table MRI with sliding multislice for rectal cancer staging: image quality and lesion detection. Eur J Radiol 73:579–587, Epub 2009 Jan 28

    Article  PubMed  Google Scholar 

  • Börnert P, Aldefeld B (2008) Principles of whole-body continuously-moving-table MRI. J Magn Reson Imaging 28:1–12, Review

    Article  PubMed  Google Scholar 

  • Brauck K, Zenge MO, Vogt FM, Quick HH, Stock F, Trarbach T, Ladd ME, Barkhausen J (2008) Feasibility of whole-body MR with T2- and T1 weighted real-time steady-state free precession sequences during continuous table movement to depict metastases. Radiology 246:910–916, Epub 2008 Jan 9

    Article  PubMed  Google Scholar 

  • Busch HP, Hoffmann HG, Rock J, Schneider C (2001) MR angiography of pelvic and leg vessels with automatic table movement technique (“MobiTrak”): clinical experience with 450 studies. Rofo 173:405–409

    Article  CAS  PubMed  Google Scholar 

  • Dietrich O, Hajnal JV (1999) Extending the coverage of true volume scans by continuous movement of the subject. In: ISMRM, 7th Scientific Meeting and Exhibition, Philadelphia, p 1653

    Google Scholar 

  • Fain SB, Browning FJ, Polzin JA, Du J, Zhou Y, Block WF, Grist TM, Mistretta CA (2004) Floating table isotropic projection (FLIPR) acquisition: a time-resolved 3D method for extended field-of-view MRI during continuous table motion. Magn Reson Med 52:1093–1102

    Article  PubMed  Google Scholar 

  • Fautz HP, Kannengiesser SA (2006) Sliding multislice (SMS): a new technique for minimum FOV usage in axial continuously moving-table acquisitions. Magn Reson Med 55:363–370

    Article  PubMed  Google Scholar 

  • Fautz HP, Honal M, Saueressig U, Schäfer O, Kannengiesser SA (2007) Artifact reduction in moving-table acquisitions using parallel imaging and multiple averages. Magn Reson Med 57:226–232

    Article  CAS  PubMed  Google Scholar 

  • Ghanem N, Kelly T, Altehoefer C, Winterer J, Schafer O, Bley TA, Moser E, Langer M (2004) Whole-body MRI in comparison to skeletal scintigraphy for detection of skeletal metastases in patients with solid tumors [Article in German]. Radiologe 44:864–873

    Article  CAS  PubMed  Google Scholar 

  • Goehde SC, Hunold P, Vogt FM, Ajaj W, Goyen M, Herborn CU, Forsting M, Debatin JF, Ruehm SG (2005) Full-body cardiovascular and tumor MRI for early detection of disease: feasibility and initial experience in 298 subjects. AJR Am J Roentgenol 184:598–611

    Article  PubMed  Google Scholar 

  • Goyen M, Ruehm SG, Barkhausen J, Kroger K, Ladd ME, Truemmler KH, Bosk S, Requardt M, Reykowski A, Debatin JF (2001) Improved multi-station peripheral MR angiography with a dedicated vascular coil. J Magn Reson Imaging 13:475–480

    Article  CAS  PubMed  Google Scholar 

  • Goyen M, Quick HH, Debatin JF, Ladd ME, Barkhausen J, Herborn CU, Bosk S, Kuehl H, Schleputz M, Ruehm SG (2002) Whole-body three-dimensional MR angiography with a rolling table platform: initial clinical experience. Radiology 224:270–277

    Article  PubMed  Google Scholar 

  • Han Y, Weigel M, Huff S, Ludwig U (2011) Whole-body diffusion-weighted imaging with a continuously moving table acquisition method: preliminary results. Magn Reson Med 65:1557–1563. doi:10.1002/mrm.22833. Epub 2011 Mar 22

    Article  PubMed  Google Scholar 

  • Herborn CU, Goyen M, Quick HH, Bosk S, Massing S, Kroeger K, Stoesser D, Ruehm SG, Debatin JF (2004) Whole-body 3D MR angiography of patients with peripheral arterial occlusive disease. AJR Am J Roentgenol 182:1427–1434

    Article  PubMed  Google Scholar 

  • Ho KY, Leiner T, de Haan MW, Kessels AG, Kitslaar PJ, van Engelshoven JM (1998) Peripheral vascular tree stenoses: evaluation with moving-bed infusion-tracking MR angiography. Radiology 206:683–692

    Article  CAS  PubMed  Google Scholar 

  • Ho KY, Leiner T, de Haan MW, van Engelshoven JM (1999) Peripheral MR angiography. Eur Radiol 9:1765–1774

    Article  CAS  PubMed  Google Scholar 

  • Honal M, Leupold J, Huff S, Baumann T, Ludwig U (2010) Compensation of breathing motion artifacts for MRI with continuously moving table. Magn Reson Med 63:701–712

    Article  PubMed  Google Scholar 

  • Huber A, Scheidler J, Wintersperger B, Baur A, Schmidt M, Requardt M, Holzknecht N, Helmberger T, Billing A, Reiser M (2003) Moving-table MR angiography of the peripheral runoff vessels: comparison of body coil and dedicated phased array coil systems. AJR Am J Roentgenol 180:1365–1373

    Article  CAS  PubMed  Google Scholar 

  • Johnson KMR, Leavitt GD, Kayser HWM (1997) Total-body MR imaging in as little as 18 seconds. Radiology 202:262–267

    Article  CAS  PubMed  Google Scholar 

  • Keupp J, Aldefeld B, Bornert P (2005) Continuously moving table SENSE imaging. Magn Reson Med 53:217–220

    Article  PubMed  Google Scholar 

  • Koken P, Dries SP, Keupp J, Bystrov D, Pekar V, Börnert P (2009) Towards automatic patient positioning and scan planning using continuously moving table MR imaging. Magn Reson Med 62:1067–1072

    Article  PubMed  Google Scholar 

  • Kruger DG, Riederer SJ, Grimm RC, Rossman PJ (2002) Continuously moving table data acquisition method for long FOV contrast-enhanced MRA and whole-body MRI. Magn Reson Med 47:224–231

    Article  PubMed  Google Scholar 

  • Kruger DG, Riederer SJ, Polzin JA, Madhuranthakam AJ, Hu HH, Glockner JF (2005) Dual-velocity continuously moving table acquisition for contrast-enhanced peripheral magnetic resonance angiography. Magn Reson Med 53:110–117

    Article  PubMed  Google Scholar 

  • Lauenstein TC, Goehde SC, Herborn CU, Treder W, Ruehm SG, Debatin JF, Barkhausen J (2002a) Three-dimensional volumetric interpolated breath-hold MR imaging for whole-body tumor staging in less than 15 minutes: a feasibility study. AJR Am J Roentgenol 179:445–449

    Article  PubMed  Google Scholar 

  • Lauenstein TC, Freudenberg LS, Goehde SC, Ruehm SG, Goyen M, Bosk S, Debatin JF, Barkhausen J (2002b) Whole-body MRI using a rolling table platform for the detection of bone metastases. Eur Radiol 12:2091–2099

    Article  PubMed  Google Scholar 

  • Lauenstein TC, Goehde SC, Herborn CU, Goyen M, Oberhoff C, Debatin JF, Ruehm SG, Barkhausen J (2004) Whole-body MR imaging: evaluation of patients for metastases. Radiology 233:139–148

    Article  PubMed  Google Scholar 

  • Leiner T, Ho KY, Nelemans PJ, de Haan MW, van Engelshoven JM (2000) Three-dimensional contrast-enhanced moving-bed infusion-tracking (MoBI-track) peripheral MR angiography with flexible choice of imaging parameters for each field of view. J Magn Reson Imaging 11:368–377

    Article  CAS  PubMed  Google Scholar 

  • Leiner T, Nijenhuis RJ, Maki JH, Lemaire E, Hoogeveen R, van Engelshoven JM (2004) Use of a three-station phased array coil to improve peripheral contrast-enhanced magnetic resonance angiography. J Magn Reson Imaging 20:417–425

    Article  PubMed  Google Scholar 

  • Ludwig U, Sommer G, Zaitsev M, Ghanem N, Hennig J, Fautz HP (2006) 2D axial moving table acquisitions with dynamic slice adaptation. Magn Reson Med 55:423–430

    Article  PubMed  Google Scholar 

  • Madhuranthakam AJ, Kruger DG, Riederer SJ, Glockner JF, Hu HH (2004) Time-resolved 3D contrast-enhanced MRA of an extended FOV using continuous table motion. Magn Reson Med 51:568–576

    Article  PubMed  Google Scholar 

  • Meaney JF, Ridgway JP, Chakraverty S, Robertson I, Kessel D, Radjenovic A, Kouwenhoven M, Kassner A, Smith MA (1998) Stepping-table gadolinium-enhanced digital subtraction MR angiography of the aorta and lower extremity arteries: preliminary experience. Radiology 211:59–67

    Article  Google Scholar 

  • Polzin JA, Kruger DG, Gurr DH, Brittain JH, Riederer SJ (2004) Correction for gradient nonlinearity in continuously moving table MR imaging. Magn Reson Med 52:181–187

    Article  PubMed  Google Scholar 

  • Quick HH, Vogt FM, Maderwald S, Herborn CU, Bosk S, Gohde S, Debatin JF, Ladd ME (2004) High spatial resolution whole-body MR angiography featuring parallel imaging: initial experience. Rofo 176:163–169

    Article  CAS  PubMed  Google Scholar 

  • Rasmus M, Bremerich J, Egelhof T, Huegli RW, Bongartz G, Bilecen D (2008) Total-body contrast-enhanced MRA on a short, wide-bore 1.5-T system: intra-individual comparison of Gd-BOPTA and Gd-DOTA. Eur Radiol 18:2265–2273, Epub 2008 Apr 23

    Article  CAS  PubMed  Google Scholar 

  • Ruehm SG, Goyen M, Quick HH, Schleputz M, Schleputz H, Bosk S, Barkhausen J, Ladd ME, Debatin JF (2000a) Whole-body MRA on a rolling table platform (AngioSURF). Rofo 172:670–674

    Article  CAS  PubMed  Google Scholar 

  • Ruehm SG, Hany TF, Pfammatter T, Schneider E, Ladd M, Debatin JF (2000b) Pelvic and lower extremity arterial imaging: diagnostic performance of three-dimensional contrast-enhanced MR angiography. AJR Am J Roentgenol 174:1127–1135

    Article  CAS  PubMed  Google Scholar 

  • Ruehm SG, Goyen M, Barkhausen J, Kroger K, Bosk S, Ladd ME, Debatin JF (2001) Rapid magnetic resonance angiography for detection of atherosclerosis. Lancet 357:1086–1089

    Article  CAS  PubMed  Google Scholar 

  • Ruehm SG, Goehde SC, Goyen M (2004) Whole body MR angiography screening. Int J Cardiovasc Imaging 20:587–591

    Article  PubMed  Google Scholar 

  • Schaefer AO, Langer M, Baumann T (2010) Continuously moving table MRI in oncology. Rofo 182:954–964, Epub 2010 Oct 4. Review

    Article  PubMed  Google Scholar 

  • Shetty AN, Bis KG, Duerinckx AJ, Narra VR (2002) Lower extremity MR angiography: universal retrofitting of high-field-strength systems with stepping kinematic imaging platforms initial experience. Radiology 222:284–291

    Article  PubMed  Google Scholar 

  • Sommer G, Fautz HP, Ludwig U, Hennig J (2006) Multicontrast sequences with continuous table motion: a novel acquisition technique for extended field of view imaging. Magn Reson Med 55:918–922

    Article  PubMed  Google Scholar 

  • Sommer G, Schaefer AO, Baumann T, Ludwig UA, Fautz HP (2008) Sliding multislice MRI for abdominal staging of patients with pelvic malignancies: a pilot study. J Magn Reson Imaging 27:666–672

    Article  PubMed  Google Scholar 

  • Vogt FM, Zenge MO, Ladd ME, Herborn CU, Brauck K, Luboldt W, Barkhausen J, Quick HH (2007) Peripheral vascular disease: comparison of continuous MR angiography and conventional MR angiograph--ilot study. Radiology 243:229–238, Epub 2007 Feb 28

    Google Scholar 

  • Wang Y, Lee HM, Khilnani NM, Jagust MB, Winchester PA, Bush HL, Sos TA, Sostman HD (1998) Bolus-chase MR digital subtraction angiography in the lower extremity. Radiology 207:263–269

    Article  CAS  PubMed  Google Scholar 

  • Winterer JT, Strecker R, Lohrmann C, Schaefer O, Ghanem N, Bley T, Kotter E, Lehnhardt S, Hennig J (2003) Background suppression using magnetization preparation for contrast-enhanced 3D MR angiography of the pelvic and lower leg arteries. Rofo 175:28–31

    Article  CAS  PubMed  Google Scholar 

  • Zenge MO, Ladd ME, Vogt FM, Brauck K, Barkhausen J, Quick HH (2005) Whole-body magnetic resonance imaging featuring moving table continuous data acquisition with high-precision position feedback. Magn Reson Med 54:707–711

    Article  PubMed  Google Scholar 

  • Zenge MO, Vogt FM, Brauck K, Jökel M, Barkhausen J, Kannengiesser S, Ladd ME, Quick HH (2006) High-resolution continuously acquired peripheral MR angiography featuring partial parallel imaging GRAPPA. Magn Reson Med 56:859–865

    Article  PubMed  Google Scholar 

  • Zenge MO, Ladd ME, Quick HH (2009) Novel reconstruction method for three dimensional axial continuously moving table whole-body magnetic resonance imaging featuring autocalibrated parallel imaging GRAPPA. Magn Reson Med 61:867–873

    Article  PubMed  Google Scholar 

  • Zhu Y, Dumoulin CL (2003) Extended field-of-view imaging with table translation and frequency sweeping. Magn Reson Med 49:1106–1112

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald H. Quick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Quick, H.H. (2014). Technical Prerequisites for Whole-Body MRI Screening. In: Puls, R., Hosten, N. (eds) Whole-body MRI Screening. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55201-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55201-4_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-55200-7

  • Online ISBN: 978-3-642-55201-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics