Skip to main content

Non-uniform Quantum Spin Chains: Simulations of Static and Dynamic Properties

  • Conference paper
  • First Online:
Parallel Processing and Applied Mathematics (PPAM 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8385))

  • 1330 Accesses

Abstract

Since magnetic materials are often composed of magnetically isolated chains, their magnetic properties can be described by the one-dimensional quantum Heisenberg model. The quantum transfer matrix (QTM) method based on a checkerboard structure has been applied for quantum alternating spin chains. To increase the length of the transfer matrix in the Trotter direction we apply the density-matrix renormalization technique and check the efficiency of parallelization for a part of the code: the construction of the transfer matrix. Next, using the Matrix Product State representation, the time evolution of the ground-state magnetization has been performed after the sudden change in applied field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kahn, O.: Molecular Magnetism. Wiley-VCH, New York (1993)

    Google Scholar 

  2. Gatteschi, D., Sessoli, R., Villain, J.: Molecular Nanomagnets. Oxford University Press, Oxford (2006)

    Book  Google Scholar 

  3. Steiner, M., Villain, J., Windsor, C.G.: Theoretical and experimental studies on one-dimensional magnetic systems. Adv. Phys. 25, 87 (1976)

    Article  Google Scholar 

  4. Delica, T., Leschke, H.: Formulation and numerical results of the transfer-matrix method for quantum spin chains. Physica A 176, 736 (1990)

    Article  MathSciNet  Google Scholar 

  5. Kamieniarz, G., Matysiak, R.: Transfer matrix simulation technique: effectiveness and applicability to the low-dimensional magnetic spin systems. J. Comput. Appl. Math. 189, 471 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  6. Syljuåsen, O.F., Sandvik, A.W.: Quantum Monte Carlo with directed loops. Phys. Rev. E 66, 046701 (2002)

    Article  Google Scholar 

  7. Androvitsaneas, P., Fytas, N.G., Paspalakis, E., Terzis, A.F.: Quantum Monte Carlo simulations revisited: the case of anisotropic Heisenberg chains. Philos. Mag. 92, 4649 (2012)

    Article  Google Scholar 

  8. Matysiak, R., Kamieniarz, G., Gegenwart, P., Ochiai, A.: Specific heat of the polydomain Yb\(_4\)As\(_3\) system: agreement between spin - 1/2 modelling and experiment. Phys. Rev. B 79, 224413 (2009)

    Article  Google Scholar 

  9. Coulon, C., Miyasaka, H., Clerac, R.: Single-chain magnets: theoretical approach and experimental systems. Struct. Bond. 122, 163 (2006)

    Article  Google Scholar 

  10. Schollwoeck, U.: The density-matrix renormalization group. Rev. Mod. Phys. 77, 259 (2005)

    Article  Google Scholar 

  11. White, S.R.: Density-matrix algorithms for quantum renormalization groups. Phys. Rev. B 48, 10345 (1993)

    Article  Google Scholar 

  12. Bursill, R.J., Xiang, T., Gehring, G.A.: The density matrix renormalization group for a quantum spin chain at non-zero temperature. J. Phys. Condens. Matter 8, L583 (1996)

    Article  Google Scholar 

  13. Wang, X.Q., Xiang, T.: Transfer-matrix density-matrix renormalization-group theory for thermodynamics of one-dimensional quantum systems. Phys. Rev. B 56, 5061 (1997)

    Article  Google Scholar 

  14. Shibata, N.: Thermodynamics of the anisotropic Heisenberg chain calculated by the density matrix renormalization group method. J. Phys. Soc. Jpn. 66, 2221 (1997)

    Article  Google Scholar 

  15. Sobczak, P., Barasinski, A., Drzewinski, A., Kamieniarz, G., Klak, J., Bienko, A., Mrozinski, J.: Magnetic properties and DMRG modeling of the 1D bimetallic thiocyanate bridged compound \({(CuL_1)[Co(NCS)_4} (L_1 = N-rac-5, 12-Me_2-[14]-4,11-dieneN_4)\). Polyhedron 28, 1838 (2009)

    Article  Google Scholar 

  16. Barasinski, A., Drzewinski, A., Kamieniarz, G.: Quantum effects and Haldane gap in magnetic chains with alternating anisotropy axes. Comput. Phys. Commun. 182, 2013 (2011)

    Article  Google Scholar 

  17. Sobczak, P., Barasinski, A., Kamieniarz, G., Drzewinski, A.: Anisotropic planar Heisenberg model of the quantum heterobimetallic zigzag chains with bridged \(Re^{IV} - Cu^{II}\) magnetic complexes. Phys. Rev. B 84, 224431 (2011)

    Article  Google Scholar 

  18. Barasinski, A., Kamieniarz, G., Drzewinski, A.: Magnetization-based assessment of correlation energy in canted single-chain magnets. Phys. Rev. B 86, 214412 (2012)

    Article  Google Scholar 

  19. Östlund, S., Rommer, S.: Thermodynamic limit of density matrix renormalization. Phys. Rev. Lett. 75, 3537 (1995)

    Article  Google Scholar 

  20. Verstraete, F., Cirac, K.: Matrix product states represent ground states faithfully. Phys. Rev. B 73, 094423 (2006)

    Article  Google Scholar 

  21. Verstraete, F., Murg, V., Cirac, K.: Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems. Adv. Phys. 57, 143 (2008)

    Article  Google Scholar 

  22. Schollwoeck, U.: The density-matrix renormalization group in the age of matrix product states. Ann. Phys. 326, 96 (2011)

    Article  MATH  Google Scholar 

  23. Wozniak, D., Drzewinski, A., Kamieniarz, G.: Matrix-product states for the Ising model in a transverse field. Acta Phys. Superficierum 12, 187 (2012)

    Google Scholar 

  24. Barasinski, A., Sobczak, P., Drzewinski, A., Kamieniarz, G., Bienko, A., Mrozinski, J., Gatteschi, D.: Anisotropy and magnetic properties of the bimetallic thiocyanate-bridged chains: density-matrix renormalization approach. Polyhedron 29, 1485 (2010)

    Article  Google Scholar 

  25. Bauer, Barr E.: Practical Parallel Programming. Academic Press Inc, San Diego (1992)

    Google Scholar 

  26. Van de Velde, E.F.: Concurrent Scientific Computing. Springer, New York (1994)

    Book  MATH  Google Scholar 

Download references

Acknowledgments

The calculations were performed on computer facilities granted by Poznan Supercomputing and Networking Centre (Poland) as well as within DECI programme by the PRACE-2IP (FP7/2007-2013) under grant agreement no RI-283493. Support from the Polish MNiSW through the grant No N519 579138 is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bartosz Brzostowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Barasiński, A., Brzostowski, B., Matysiak, R., Sobczak, P., Woźniak, D. (2014). Non-uniform Quantum Spin Chains: Simulations of Static and Dynamic Properties. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds) Parallel Processing and Applied Mathematics. PPAM 2013. Lecture Notes in Computer Science(), vol 8385. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55195-6_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55195-6_42

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-55194-9

  • Online ISBN: 978-3-642-55195-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics