Skip to main content

Effects of Segmented Finite Difference Time Domain on GPU

  • Conference paper
  • First Online:
Parallel Processing and Applied Mathematics (PPAM 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8385))

  • 1339 Accesses

Abstract

Finite Difference Time Domain (FDTD) is the most popular method in computational electromagnetics. In acoustics, FDTD is often used as a numerical analysis technique to model mechanical wave and acoustics. FDTD in general is computationally expensive in terms of time due to its large number of time steps for accurate precision and is data parallel in nature. However, it is also memory bounded. Although previous work on FDTD has studied the effect of parallelizing FDTD on accelerators to reduce computational cost, the memory bounded problem has not been studied. In this work we consider the segmented FDTD (SFDTD) algorithm that divides the problem space into segments to reduce computational redundancy and also reduce memory. We exploit the memory hierarchy of the GPU to efficiently implement the SFDTD algorithm. To the best of our knowledge, this is the first work that studies the implementation of the SFDTD algorithm on GPU and its effect on memory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berenger, J.P.: A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114(2), 185–200 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  2. Courant, R., Friedrichs, K., Lewy, H.: On the partial difference equations of mathematical physics. IBM J. Res. Dev. 11(2), 215–234 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  3. Demir, V., Elsherbeni, A.: Utilization of CUDA-OpenGL interoperability to display electromagnetic fields calculated by FDTD. In: Computational Electromagnetics International Workshop (CEM), pp. 95–98 (2011)

    Google Scholar 

  4. Drumm, I.: Implementing the FDTD tutorial. University of Salford - EPSRC Summer School, Salford, UK. http://www.acoustics.salford.ac.uk/res/drumm/FDTD-FE/Implementing%20FDTD%20Tutorial.doc (2007)

  5. Engquist, B., Majda, A.: Absorbing boundary conditions for the numerical simulation of waves. Math. Comput. 31(139), 629–651 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  6. Herlihy, M.P.: Impossibility and universality results for wait-free synchronization. In: Proceedings of the 7th Annual ACM Symposium on Principles of Distributed Computing, PODC ’88, pp. 276–290. ACM, New York (1988)

    Google Scholar 

  7. Holland, R.: THREDE: a free-field EMP coupling and scattering code. IEEE Trans. Nucl. Sci. 24(6), 2416–2421 (1977)

    Article  MathSciNet  Google Scholar 

  8. Ireland, D., Tee, W.C., Bialkowski, M.: Accelerated biomedical simulations using the FDTD method and the CUDA architecture. In: Microwave Conference Proceedings (APMC), 2011 Asia-Pacific, pp. 70–73. IEEE (2011)

    Google Scholar 

  9. Ju, F., Xing, C.: A study of parallel FDTD for simulating complex antennas on a cluster system. In: Microwave Conference Proceedings, 2005. APMC 2005. Asia-Pacific Conference Proceedings, vol. 5, p.4 (2005)

    Google Scholar 

  10. Kirk, D.B., Wen-mei, W.H.: Programming Massively Parallel Processors: A Hands-on Approach. Morgan Kaufmann, Boston (2010)

    Google Scholar 

  11. Kondylis, G.D., De Flaviis, F., Pottie, G.J., Itoh, T.: A memory-efficient formulation of the finite-difference time-domain method for the solution of Maxwell equations. IEEE Trans. Microwave Theor. Tech. 49(7), 1310–1320 (2001)

    Article  Google Scholar 

  12. Kowalczyk, K.: Boundary and medium modelling using compact finite difference schemes in simulations of room acoustics for audio and architectural design applications. Ph.D. thesis, Queen’s University Belfast (2010)

    Google Scholar 

  13. Lindman, E.: Free pace boundary conditions of the time dependent wave equation. J. Comput. Phys. 18(1), 66–78 (1975)

    Article  MATH  Google Scholar 

  14. Lipták, B.G.: Instrument Engineers’ Handbook: Process Control and Optimization, vol. 2. CRC Press, Boca Raton (2005)

    Book  Google Scholar 

  15. Livesey, M., Stack, J., Costen, F., Nanri, T., Nakashima, N., Fujino, S.: Development of a CUDA implementation of the 3D FDTD method. IEEE Antennas Propag. Mag. 54(5), 186–195 (2012)

    Article  Google Scholar 

  16. Moore, T., Blaschak, J., Taflove, A., Kriegsmann, G.: Theory and application of radiation boundary operators. IEEE Trans. Antennas Propag. 36(12), 1797–1812 (1988)

    Article  Google Scholar 

  17. Mur, G.: Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic-field equations. IEEE Trans. Electromagn. Compat EMC 23(4), 377–382 (1981)

    Article  Google Scholar 

  18. Nagaoka, T., Watanabe, S.: Accelerating three-dimensional FDTD calculations on GPU clusters for electromagnetic field simulation. In: 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 5691–5694 (2012)

    Google Scholar 

  19. Schroeder, M., Rossing, T.D., Dunn, F., Hartmann, W.M., Campbell, D.M., Fletcher, N.H.: Springer Handbook of Acoustics, 1st edn. Springer, New York (2007)

    Google Scholar 

  20. Taflove, A.: Application of the finite-difference time-domain method to sinusoidal steady-state electromagnetic-penetration problems. IEEE Trans. Electromagn. Compat EMC 22(3), 191–202 (1980)

    Article  Google Scholar 

  21. Unno, M., Aono, S., Asai, H.: GPU-based massively parallel 3-D HIE-FDTD method for high-speed electromagnetic field simulation. IEEE Trans. Electromagn. Compat. 54(4), 912–921 (2012)

    Article  Google Scholar 

  22. Wu, Y., Lin, M., Wassell, I.: Path loss estimation in 3D environments using a modified 2D finite-difference time-domain technique. In: 2008 IET 7th International Conference on Computation in Electromagnetics, CEM 2008, pp. 98–99 (2008)

    Google Scholar 

  23. Wu, Y., Wassell, I.: Introduction to the segmented finite-difference time-domain method. IEEE Trans. Magn. 45(3), 1364–1367 (2009)

    Article  Google Scholar 

  24. Xu, M., Thulasiraman, P., Noghanian, S.: Microwave tomography for breast cancer detection on cell broadband engine processors. J. Parallel Distrib. Comput. 72(9), 1106–1116 (2012)

    Article  Google Scholar 

  25. Yee, K.: Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 14(3), 302–307 (1966)

    Article  MATH  Google Scholar 

  26. Yu, W., Liu, Y., Su, Z., Hunag, N.T., Mittra, R.: A robust parallel conformal finite-difference time-domain processing package using the MPI library. IEEE Antennas Propag. Mag. 47(3), 39–59 (2005)

    Article  Google Scholar 

  27. Yuan, X., Borup, D., Wiskin, J., Berggren, M., Eidens, R., Johnson, S.: Formulation and validation of Berenger’s PML absorbing boundary for the FDTD simulation of acoustic scattering. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44(4), 816–822 (1997)

    Article  Google Scholar 

  28. Zhang, C., Qin, Y., Zhao, G., Zhu, Y.: Two-dimensional FDTD simulation for the acoustic propagation in a piezoelectric superlattice. In: 2009 IEEE International Ultrasonics Symposium (IUS), pp. 2031–2032 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parimala Thulasiraman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chan, J.J.M., Battoo, G., Thulasiraman, P., Thulasiram, R.K. (2014). Effects of Segmented Finite Difference Time Domain on GPU. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds) Parallel Processing and Applied Mathematics. PPAM 2013. Lecture Notes in Computer Science(), vol 8385. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55195-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55195-6_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-55194-9

  • Online ISBN: 978-3-642-55195-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics