Skip to main content

Fluoride Effects on the Dentin-Pulp Complex

  • Chapter
  • First Online:
The Dental Pulp

Abstract

Fluoride has been widely used to prevent dental caries by enhancing enamel remineralization and inhibiting demineralization. The increased use of fluorides and the reduction in dental caries have been accompanied by increased enamel fluorosis. Despite the great deal that is known about enamel fluorosis, not much is known on the effects of excess fluoride on forming dentin and its relationship to the tooth structure. Previous studies have described dentin hypomineralization with lower microhardness and disrupted hydroxyapatite crystal arrangement in human dentin exposed to fluoride at higher levels than clinically beneficial to prevent the dental caries. These effects appear to be dose related. More recently, dentin fluorosis has been linked to alteration in dentin matrix proteins synthesis, including reduced synthesis of dentin sialoprotein and dentin hypomineralization, while in vitro, fluoride has been shown to modulate type 1 collagen synthesis in the pulp in a dose-related manner. Further studies are necessary to fully understand the precise mechanism of dentin fluorosis. Nevertheless, if the dentin matrix formation and mineralization is affected by exposure to fluoride, this may affect the incidence and rate of progression of dentin caries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Denbesten P, Li W. Chronic fluoride toxicity: dental fluorosis. Monogr Oral Sci. 2011;22:81–96.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Levine RS. Fluoride and caries prevention: 1. Scientific rationale. Dent Updat. 1991;18(3):105–6, 108–10.

    Google Scholar 

  3. Fejerskov O, Silverstone LM, Melsen B, Moller IJ. Histological features of fluorosed human dental enamel. Caries Res. 1975;9(3):190–210.

    Article  PubMed  Google Scholar 

  4. Fejerskov O, Thylstrup A, Larsen MJ. Clinical and structural features and possible pathogenic mechanisms of dental fluorosis. Scand J Dent Res. 1977;85(7):510–34.

    PubMed  Google Scholar 

  5. Fejerskov O, Yanagisawa T, Tohda H, Larsen MJ, Josephsen K, Mosha HJ. Posteruptive changes in human dental fluorosis–a histological and ultrastructural study. Proc Finn Dent Soc. 1991;87(4):607–19.

    PubMed  Google Scholar 

  6. Angmar-Mansson B, Ericsson Y, Ekberg O. Plasma fluoride and enamel fluorosis. Calcif Tissue Res. 1976;22(1):77–84.

    Article  PubMed  Google Scholar 

  7. Bronckers AL, Lyaruu DM, DenBesten PK. The impact of fluoride on ameloblasts and the mechanisms of enamel fluorosis. J Dent Res. 2009;88(10):877–93.

    Article  PubMed Central  PubMed  Google Scholar 

  8. DenBesten PK. Effects of fluoride on protein secretion and removal during enamel development in the rat. J Dent Res. 1986;65:1272–7.

    Article  Google Scholar 

  9. DenBesten PK, Crenshaw MA. The effects of chronic high fluoride levels on forming enamel in the rat. Arch Oral Biol. 1984;29(9):675–9.

    Article  PubMed  Google Scholar 

  10. DenBesten PK, Yan Y, Featherstone JD, Hilton JF, Smith CE, Li W. Effects of fluoride on rat dental enamel matrix proteinases. Arch Oral Biol. 2002;47(11):763–70.

    Article  PubMed  Google Scholar 

  11. Fejerskov O, Yaeger JA, Thylstrup A. Microradiography of the effect of acute and chronic administration of fluoride on human and rat dentine and enamel. Arch Oral Biol. 1979;24(2):123–30.

    Article  PubMed  Google Scholar 

  12. Fejerskov O, Larsen MJ, Josephsen K, Thylstrup A. Effect of long-term administration of fluoride on plasma fluoride and calcium in relation to forming enamel and dentin in rats. Scand J Dent Res. 1979;87(2):98–104.

    PubMed  Google Scholar 

  13. Vieira A, Hancock R, Dumitriu M, Schwartz M, Limeback H, Grynpas M. How does fluoride affect dentin microhardness and mineralization? J Dent Res. 2005;84(10):951–7.

    Article  PubMed  Google Scholar 

  14. Vieira AP, Hancock R, Limeback H, Maia R, Grynpas MD. Is fluoride concentration in dentin and enamel a good indicator of dental fluorosis? J Dent Res. 2004;83(1):76–80.

    Article  PubMed  Google Scholar 

  15. Kierdorf U, Kierdorf H, Fejerskov O. Fluoride-induced developmental changes in enamel and dentine of European roe deer (Capreolus capreolus L.) as a result of environmental pollution. Arch Oral Biol. 1993;38(12):1071–81.

    Article  PubMed  Google Scholar 

  16. Waidyasekera K, Nikaido T, Weerasinghe D, Watanabe A, Ichinose S, Tay F, et al. Why does fluorosed dentine show a higher susceptibility for caries: an ultra-morphological explanation. J Med Dent Sci. 2010;57(1):17–23.

    PubMed  Google Scholar 

  17. Moseley R, Sloan AJ, Waddington RJ, Smith AJ, Hall RC, Embery G. The influence of fluoride on the cellular morphology and synthetic activity of the rat dentine-pulp complex in vitro. Arch Oral Biol. 2003;48(1):39–46.

    Article  PubMed  Google Scholar 

  18. Maciejewska I, Spodnik JH, Domaradzka-Pytel B, Sidor-Kaczmarek J, Bereznowski Z. Fluoride alters type I collagen expression in the early stages of odontogenesis. Folia Morphol (Warsz). 2006;65(4):359–66.

    Google Scholar 

  19. Hall RC, Embery G, Waddington RJ. Modification of the proteoglycans of rat incisor dentin-predentin during in vivo fluorosis. Eur J Oral Sci. 1996;104(3):285–91.

    Article  PubMed  Google Scholar 

  20. Waddington RJ, Moseley R, Smith AJ, Sloan AJ, Embery G. Fluoride-induced changes to proteoglycan structure synthesised within the dentine-pulp complex in vitro. Biochim Biophys Acta. 2004;1689(2):142–51.

    Article  PubMed  Google Scholar 

  21. Hedbom E, Heinegard D. Interaction of a 59-kDa connective tissue matrix protein with collagen I and collagen II. J Biol Chem. 1989;264(12):6898–905.

    PubMed  Google Scholar 

  22. Embery G, Hall R, Waddington R, Septier D, Goldberg M. Proteoglycans in dentinogenesis. Crit Rev Oral Biol Med. 2001;12(4):331–49.

    Article  PubMed  Google Scholar 

  23. Sugars RV, Milan AM, Brown JO, Waddington RJ, Hall RC, Embery G. Molecular interaction of recombinant decorin and biglycan with type I collagen influences crystal growth. Connect Tissue Res. 2003;44 Suppl 1:189–95.

    Article  PubMed  Google Scholar 

  24. Dimuzio MT, Veis A. Phosphophoryns-major noncollagenous proteins of rat incisor dentin. Calcif Tissue Res. 1978;25(2):169–78.

    Article  PubMed  Google Scholar 

  25. Butler WT. The chemistry and biology of mineralized tissues: proceedings of the Second International Conference on the Chemistry and Biology of Mineralized Tissues, held in Gulf Shores, Alabama, Sept 9–14, 1984. [S.l.: s.n.]; 1985. 436 p.

    Google Scholar 

  26. Saito T, Arsenault AL, Yamauchi M, Kuboki Y, Crenshaw MA. Mineral induction by immobilized phosphoproteins. Bone. 1997;21(4):305–11.

    Article  PubMed  Google Scholar 

  27. Linde A, Lussi A, Crenshaw MA. Mineral induction by immobilized polyanionic proteins. Calcif Tissue Int. 1989;44(4):286–95.

    Article  PubMed  Google Scholar 

  28. George A, Bannon L, Sabsay B, Dillon JW, Malone J, Veis A, et al. The carboxyl-terminal domain of phosphophoryn contains unique extended triplet amino acid repeat sequences forming ordered carboxyl-phosphate interaction ridges that may be essential in the biomineralization process. J Biol Chem. 1996;271(51):32869–73.

    Article  PubMed  Google Scholar 

  29. Butler WT. Dentin matrix proteins. Eur J Oral Sci. 1998;106 Suppl 1:204–10.

    PubMed  Google Scholar 

  30. Boskey AL, Maresca M, Doty S, Sabsay B, Veis A. Concentration-dependent effects of dentin phosphophoryn in the regulation of in vitro hydroxyapatite formation and growth. Bone Miner. 1990;11(1):55–65.

    Article  PubMed  Google Scholar 

  31. Jonsson M, Fredriksson S, Jontell M, Linde A. Isoelectric focusing of the phosphoprotein of rat-incisor dentin in ampholine and acid pH gradients. Evidence for carrier ampholyte-protein complexes. J Chromatogr. 1978;157:235–42.

    Article  PubMed  Google Scholar 

  32. Stetler-Stevenson WG, Veis A. Bovine dentin phosphophoryn: composition and molecular weight. Biochemistry. 1983;22(18):4326–35.

    Article  PubMed  Google Scholar 

  33. Nawrot CF, Campbell DJ, Schroeder JK, Van Valkenburg M. Dental phosphoprotein-induced formation of hydroxylapatite during in vitro synthesis of amorphous calcium phosphate. Biochemistry. 1976;15(16):3445–9.

    Article  PubMed  Google Scholar 

  34. Milan AM, Waddington RJ, Embery G. Altered phosphorylation of rat dentine phosphoproteins by fluoride in vivo. Calcif Tissue Int. 1999;64(3):234–8.

    Article  PubMed  Google Scholar 

  35. Milan AM, Waddington RJ, Embery G. Fluoride alters casein kinase II and alkaline phosphatase activity in vitro with potential implications for dentine mineralization. Arch Oral Biol. 2001;46(4):343–51.

    Article  PubMed  Google Scholar 

  36. Ahmad M, Iseki H, Abduweli D, Baba O, Tabata MJ, Takano Y. Ultrastructural and histochemical evaluation of appositional mineralization of circumpulpal dentin at the crown- and root-analog portions of rat incisors. J Electron Microsc. 2011;60(1):79–87.

    Article  Google Scholar 

  37. Goldberg M, Septier D. A comparative study of the transition between predentin and dentin, using various preparative procedures in the rat. Eur J Oral Sci. 1996;104(3):269–77.

    Article  PubMed  Google Scholar 

  38. Takagi Y, Nagai H, Sasaki S. Difference in noncollagenous matrix composition between crown and root dentin of bovine incisor. Calcif Tissue Int. 1988;42(2):97–103.

    Article  PubMed  Google Scholar 

  39. Steinfort J, van den Bos T, Beertsen W. Differences between enamel-related and cementum-related dentin in the rat incisor with special emphasis on the phosphoproteins. J Biol Chem. 1989;264(5):2840–5.

    PubMed  Google Scholar 

  40. Steinfort J, Deblauwe BM, Beertsen W. The inorganic components of cementum- and enamel-related dentin in the rat incisor. J Dent Res. 1990;69(6):1287–92.

    Article  PubMed  Google Scholar 

  41. Beertsen W, Niehof A, Everts V. Effects of 1-hydroxyethylidene-1, 1-bisphosphonate (HEBP) on the formation of dentin and the periodontal attachment apparatus in the mouse. Am J Anat. 1985;174(1):83–103.

    Article  PubMed  Google Scholar 

  42. Beertsen W, Niehof A. Root-analogue versus crown-analogue dentin: a radioautographic and ultrastructural investigation of the mouse incisor. Anat Rec. 1986;215(2):106–18.

    Article  PubMed  Google Scholar 

  43. Weinstock M, Leblond CP. Radioautographic visualization of the deposition of a phosphoprotein at the mineralization front in the dentin of the rat incisor. J Cell Biol. 1973;56(3):838–45.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Inage T, Toda Y. Phosphoprotein synthesis and secretion by odontoblasts in rat incisors as revealed by electron microscopic radioautography. Am J Anat. 1988;182(4):369–80.

    Article  PubMed  Google Scholar 

  45. Nakade O, Koyama H, Arai J, Ariji H, Takada J, Kaku T. Stimulation by low concentrations of fluoride of the proliferation and alkaline phosphatase activity of human dental pulp cells in vitro. Arch Oral Biol. 1999;44(1):89–92.

    Article  PubMed  Google Scholar 

  46. Thaweboon S, Thaweboon B, Chunhabundit P, Suppukpatana P. Effect of fluoride on human dental pulp cells in vitro. Southeast Asian J Trop Med Public Health. 2003;34(4):915–8.

    PubMed  Google Scholar 

  47. Veron MH, Couble ML, Magloire H. Selective inhibition of collagen synthesis by fluoride in human pulp fibroblasts in vitro. Calcif Tissue Int. 1993;53(1):38–44.

    Article  PubMed  Google Scholar 

  48. Seltzer S. Advances in biology of the human dental pulp. Newer restorative materials and the pulp. Oral Surg Oral Med Oral Pathol. 1971;32(3):454–60.

    Article  PubMed  Google Scholar 

  49. Spott RJ, Rosett T. Lysosomes and the dental pulp. Oral Surg Oral Med Oral Pathol. 1973;36(4):569–79.

    Article  PubMed  Google Scholar 

  50. Weerheijm KL. Occlusal ‘hidden caries’. Dent Updat. 1997;24(5):182–4.

    Google Scholar 

  51. Zadik Y, Bechor R. Hidden occlusal caries lesion – a diagnostic challenge. Refuat Hapeh Vehashinayim. 2008;25(1):34–9, 83.

    PubMed  Google Scholar 

  52. Hashizume LN, Mathias TC, Cibils DM, Maltz M. Effect of the widespread use of fluorides on the occurrence of hidden caries in children. Int J Paediatr Dent. 2013;23(1):72–6.

    Article  PubMed  Google Scholar 

  53. Waidyasekera PG, Nikaido T, Weerasinghe DD, Wettasinghe KA, Tagami J. Caries susceptibility of human fluorosed enamel and dentine. J Dent. 2007;35(4):343–9.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pamela Den Besten DDS, MS .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nakano, Y., Besten, P.D. (2014). Fluoride Effects on the Dentin-Pulp Complex. In: Goldberg, M. (eds) The Dental Pulp. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55160-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55160-4_14

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-55159-8

  • Online ISBN: 978-3-642-55160-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics