Skip to main content

Pulp Reactions to Dental Materials

  • Chapter
  • First Online:
The Dental Pulp

Abstract

The dental pulp is – beside the periodontal tissues and the oral mucous membranes – the prime local target organ for direct or indirect biologic interaction with dental materials. Dental materials are not only classical restorative materials and those needed in the course of fabricating the restorations (e.g., impression materials) but also substances like tooth-whitening products or preventive varnishes. Due to its anatomical characteristics containing tubule with odontoblastic processes and lateral processes, the dentin is not only permeable, but it is also itself as a vital tissue biologically responsive, and thus any contact of a material or substance with dentin may possibly interfere with the dental pulp. Even the dental enamel is permeable for certain small molecules like hydrogen peroxide, which is released from tooth-whitening products, and again the pulp is the final target organ. Clinically, pain, pulp inflammation, or even pulp necrosis may result after contact with such materials, but often pulp damage occurs without overt clinical symptoms. However, through proper precautions, pulp damage can often be prevented. Furthermore, dental materials may not only damage the dental pulp, but they may also inhibit repair and/or regeneration. Thus, dental materials may interfere with the final aim of pulp therapy, namely, to keep the dental pulp vital. The topic of this chapter “Pulp Reactions to Dental Materials” covers a large area. Due to the limited space of this chapter, mainly general mechanisms of material-related pulp reactions as well as methods for preventing pulp damage and for stimulating pulp repair/regeneration are outlined. More detailed information especially on material groups is available in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Smith AJ, Lumley PJ, Tomson PL, Cooper PR. Dental regeneration and materials: a partnership. Clin Oral Investig. 2008;12:103–8.

    Article  PubMed  Google Scholar 

  2. Schmalz G, Arenholt-Bindlev D. Biocompatibility of dental materials. Heidelberg: Springer; 2009.

    Google Scholar 

  3. Mjör I. Pulp-dentin biology in restorative dentistry. Chicago/Berlin: Quintessence Publishing Co; 2002.

    Google Scholar 

  4. Murray PE, Smith AJ, Garcia-Godoy F, Lumley PJ. Comparison of operative procedure variables on pulpal viability in an ex vivo model. Int Endod J. 2008;41:389–400.

    Article  PubMed  Google Scholar 

  5. Cavalcanti BN, Lage-Marques JL, Rode SM. Pulpal temperature increases with Er:YAG laser and high-speed handpieces. J Prosthet Dent. 2003;90:447–51.

    Article  PubMed  Google Scholar 

  6. International Organization for Standardization: ISO 14457:2012 Dentistry – Handpieces and motors. International Organization for Standardization. Case postale 56 – CH-1211 Geneva 20; 2014.

    Google Scholar 

  7. Cavalcanti BN, Serairdarian PI, Rode SM. Water flow in high-speed handpieces. Quintessence Int. 2005;36:361–4.

    PubMed  Google Scholar 

  8. Goldberg M, Smith AJ. Cells and extracellular matrices of dentin and pulp: a biological basis for repair and tissue engineering. Crit Rev Oral Biol Med. 2004;15:13–27.

    Article  PubMed  Google Scholar 

  9. Banerjee A, Pabari H, Paolinelis G, Thompson ID, Watson TF. An in vitro evaluation of selective demineralised enamel removal using bio-active glass air abrasion. Clin Oral Investig. 2011;15:895–900.

    Article  PubMed  Google Scholar 

  10. Louw NP, Pameijer CH, Ackermann WD, Ertl T, Cappius HJ, Norval G. Pulp histology after Er:YAG laser cavity preparation in subhuman primates–a pilot study. SADJ. 2002;57:313–7.

    PubMed  Google Scholar 

  11. Zesewitz H, Klaiber B, Hotz P, Hugo B. Heat propagation in dentin during cavity preparation in vitro with oscillating instruments. Schweiz Monatsschr Zahnmed. 2005;115:536–41.

    PubMed  Google Scholar 

  12. Silva GA, Lanza LD, Lopes-Junior N, Moreira A, Alves JB. Direct pulp capping with a dentin bonding system in human teeth: a clinical and histological evaluation. Oper Dent. 2006;31:297–307.

    Article  PubMed  Google Scholar 

  13. Ziebolz D, Helms K, Hannig C, Attin T. Efficacy and oral side effects of two highly concentrated tray-based bleaching systems. Clin Oral Investig. 2007;11:267–75.

    Article  PubMed  Google Scholar 

  14. de Oliveira Duque CC, Soares DG, Basso FG, Hebling J, de Souza Costa CA. Bleaching effectiveness, hydrogen peroxide diffusion, and cytotoxicity of a chemically activated bleaching gel. Clin Oral Investig. 2013. doi: 10.1007/s00784-013-1147-4.

  15. Galler K, Hiller KA, Ettl T, Schmalz G. Selective influence of dentin thickness upon cytotoxicity of dentin contacting materials. J Endod. 2005;31:396–9.

    Article  PubMed  Google Scholar 

  16. Schweikl H, Spagnuolo G, Schmalz G. Genetic and cellular toxicology of dental resin monomers. J Dent Res. 2006;85:870–7.

    Article  PubMed  Google Scholar 

  17. Ferracane JL. Elution of leachable components from composites. J Oral Rehabil. 1994;21:441–52.

    Article  PubMed  Google Scholar 

  18. Geurtsen W. Substances released from dental resin composites and glass ionomer cements. Eur J Oral Sci. 1998;106:687–95.

    Article  PubMed  Google Scholar 

  19. Gerzina TM, Hume WR. Diffusion of monomers from bonding resin-resin composite combinations through dentine in vitro. J Dent. 1996;24:125–8.

    Article  PubMed  Google Scholar 

  20. Noda M, Wataha JC, Kaga M, Lockwood PE, Volkmann KR, Sano H. Components of dentinal adhesives modulate heat shock protein 72 expression in heat-stressed THP-1 human monocytes at sublethal concentrations. J Dent Res. 2002;81:265–9.

    Article  PubMed  Google Scholar 

  21. Splieth C, Bernhardt O, Heinrich A, Bernhardt H, Meyer G. Anaerobic microflora under Class I and Class II composite and amalgam restorations. Quintessence Int. 2003;34:497–503.

    PubMed  Google Scholar 

  22. Bergenholtz G. Evidence for bacterial causation of adverse pulpal responses in resin-based dental restorations. Crit Rev Oral Biol Med. 2000;11:467–80.

    Article  PubMed  Google Scholar 

  23. Krifka S, Federlin M, Hiller KA, Schmalz G. Microleakage of silorane- and methacrylate-based class V composite restorations. Clin Oral Investig. 2012;16:1117–24.

    Article  PubMed  Google Scholar 

  24. Bagis YH, Baltacioglu IH, Kahyaogullari S. Comparing microleakage and the layering methods of silorane-based resin composite in wide Class II MOD cavities. Oper Dent. 2009;34:578–85.

    Article  PubMed  Google Scholar 

  25. Heintze SD. Systematic reviews: I. The correlation between laboratory tests on marginal quality and bond strength. II. The correlation between marginal quality and clinical outcome. J Adhes Dent. 2007;9 Suppl 1:77–106.

    PubMed  Google Scholar 

  26. Eckhardt A, Harorli T, Limtanyakul J, Hiller KA, Bosl C, Bolay C, Reichl FX, Schmalz G, Schweikl H. Inhibition of cytokine and surface antigen expression in LPS-stimulated murine macrophages by triethylene glycol dimethacrylate. Biomaterials. 2009;30:1665–74.

    Article  PubMed  Google Scholar 

  27. Schmalz G, Krifka S, Schweikl H. Toll-like receptors, LPS, and dental monomers. Adv Dent Res. 2011;23:302–6.

    Article  PubMed  Google Scholar 

  28. Hansel C, Leyhausen G, Mai UE, Geurtsen W. Effects of various resin composite (co)monomers and extracts on two caries-associated micro-organisms in vitro. J Dent Res. 1998;77:60–7.

    Article  PubMed  Google Scholar 

  29. Jandt KD, Mills RW. A brief history of LED photopolymerization. Dent Mater. 2013;29:605–17.

    Article  PubMed  Google Scholar 

  30. Unemori M, Matsuya Y, Akashi A, Goto Y, Akamine A. Self-etching adhesives and postoperative sensitivity. Am J Dent. 2004;17:191–5.

    PubMed  Google Scholar 

  31. Schmalz G, Hiller KA, Nunez LJ, Stoll J, Weis K. Permeability characteristics of bovine and human dentin under different pretreatment conditions. J Endod. 2001;27:23–30.

    Article  PubMed  Google Scholar 

  32. Reeder Jr OW, Walton RE, Livingston MJ, Pashley DH. Dentin permeability: determinants of hydraulic conductance. J Dent Res. 1978;57:187–93.

    Article  PubMed  Google Scholar 

  33. Schmalz G, Schuster U, Nuetzel K, Schweikl H. An in vitro pulp chamber with three-dimensional cell cultures. J Endod. 1999;25:24–9.

    Article  PubMed  Google Scholar 

  34. Schuster U, Schmalz G, Thonemann B, Mendel N, Metzl C. Cytotoxicity testing with three-dimensional cultures of transfected pulp-derived cells. J Endod. 2001;27:259–65.

    Article  PubMed  Google Scholar 

  35. International Organization for Standardization: ISO 7405: Dentistry. Preclinical evaluation of the biocompatibility of medical devices used in dentistry: test methods for dental materials. Geneva: InternationalOrganization for Standardization; 2012, 2013.

    Google Scholar 

  36. Magloire H, Joffre A, Bleicher F. An in vitro model of human dental pulp repair. J Dent Res. 1996;75:1971–8.

    Article  PubMed  Google Scholar 

  37. Sloan AJ, Smith AJ. Stimulation of the dentine-pulp complex of rat incisor teeth by transforming growth factor-beta isoforms 1–3 in vitro. Arch Oral Biol. 1999;44:149–56.

    Article  PubMed  Google Scholar 

  38. About I. Dentin regeneration in vitro: the pivotal role of supportive cells. Adv Dent Res. 2011;23:320–4.

    Article  PubMed  Google Scholar 

  39. Tziafas D, Smith AJ, Lesot H. Designing new treatment strategies in vital pulp therapy. J Dent. 2000;28:77–92.

    Article  PubMed  Google Scholar 

  40. Jontell M, Okiji T, Dahlgren U, Bergenholtz G. Immune defense mechanisms of the dental pulp. Crit Rev Oral Biol Med. 1998;9:179–200.

    Google Scholar 

  41. Bhingare AC, Ohno T, Tomura M, Zhang C, Aramaki O, Otsuki M, Tagami J, Azuma M. Dental pulp dendritic cells migrate to regional lymph nodes. J Dent Res. 2014;93:288–93.

    Google Scholar 

  42. Krifka S, Spagnuolo G, Schmalz G, Schweikl H. A review of adaptive mechanisms in cell responses towards oxidative stress caused by dental resin monomers. Biomaterials. 2013;34:4555–63.

    Article  PubMed  Google Scholar 

  43. Galler KM, Schweikl H, Hiller KA, Cavender AC, Bolay C, D’Souza RN, Schmalz G. TEGDMA reduces mineralization in dental pulp cells. J Dent Res. 2011;90:257–62.

    Article  PubMed  Google Scholar 

  44. Murray PE, Stanley HR, Matthews JB, Sloan AJ, Smith AJ. Age-related odontometric changes of human teeth. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2002;93:474–82.

    Article  PubMed  Google Scholar 

  45. Schmalz G, Hoffmann M, Weis K, Schweikl H. Influence of albumin and collagen on the cell mortality evoked by zinc oxide-eugenol in vitro. J Endod. 2000;26:284–7.

    Article  PubMed  Google Scholar 

  46. Schedle A, Franz A, Rausch-Fan XH, Samorapoompichit P, Boltz-Nitulescu G, Slavicek R. Cell culture study of dental materials: composite compared to amalgam. Z Stomatol. 1994;91(Suppl. 6):39–42.

    Google Scholar 

  47. Schmalz G, Schmalz C. Toxicity tests on dental filling materials. Int Dent J. 1981;31:185–92.

    PubMed  Google Scholar 

  48. Meryon SD. The effect of zinc on the biocompatibility of dental amalgams in vitro. Biomaterials. 1984;5:293–7.

    Article  PubMed  Google Scholar 

  49. Schmalz G, Hiller K-A, Aslan-Dorter F. New developments in the filter test system for cytotoxicity testing. Mater Sci Mater Med. 2013;5:43–51.

    Article  Google Scholar 

  50. Pameijer CH, Stanley HR, Ecker G. Biocompatibility of a glass ionomer luting agent. 2. Crown cementation. Am J Dent. 1991;4:134–41.

    PubMed  Google Scholar 

  51. Schmalz G, Thonemann B, Riedel M, Elderton RJ. Biological and clinical investigations of a glass ionomer base material. Dent Mater. 1994;10:304–13.

    Article  PubMed  Google Scholar 

  52. Graham L, Cooper PR, Cassidy N, Nor JE, Sloan AJ, Smith AJ. The effect of calcium hydroxide on solubilisation of bio-active dentine matrix components. Biomaterials. 2006;27:2865–73.

    Article  PubMed  Google Scholar 

  53. Rehfeld RL, Mazer RB, Leinfelder KF, Russell CM. Evaluation of various forms of calcium hydroxide in the monitoring of microleakage. Dent Mater. 1991;7:202–5.

    Article  PubMed  Google Scholar 

  54. Peng W, Liu W, Zhai W, Jiang L, Li L, Chang J, Zhu Y. Effect of tricalcium silicate on the proliferation and odontogenic differentiation of human dental pulp cells. J Endod. 2011;37:1240–6.

    Article  PubMed  Google Scholar 

  55. Laurent P, Camps J, De MM, Dejou J, About I. Induction of specific cell responses to a Ca(3)SiO(5)-based posterior restorative material. Dent Mater. 2008;24:1486–94.

    Article  PubMed  Google Scholar 

  56. Eid AA, Niu LN, Primus CM, Opperman LA, Pashley DH, Watanabe I, Tay FR. In vitro osteogenic/dentinogenic potential of an experimental calcium aluminosilicate cement. J Endod. 2013;39:1161–6.

    Article  PubMed  Google Scholar 

  57. Laurent P, Camps J, About I. Biodentine(TM) induces TGF-beta1 release from human pulp cells and early dental pulp mineralization. Int Endod J. 2012;45:439–48.

    Article  PubMed  Google Scholar 

  58. Tran XV, Gorin C, Willig C, Baroukh B, Pellat B, Decup F, Opsahl VS, Chaussain C, Boukpessi T. Effect of a calcium-silicate-based restorative cement on pulp repair. J Dent Res. 2012;91:1166–71.

    Article  PubMed  Google Scholar 

  59. Nowicka A, Lipski M, Parafiniuk M, Sporniak-Tutak K, Lichota D, Kosierkiewicz A, Kaczmarek W, Buczkowska-Radlinska J. Response of human dental pulp capped with biodentine and mineral trioxide aggregate. J Endod. 2013;39:743–7.

    Article  PubMed  Google Scholar 

  60. Gandolfi MG, Siboni F, Prati C. Chemical-physical properties of TheraCal, a novel light-curable MTA-like material for pulp capping. Int Endod J. 2012;45:571–9.

    Article  PubMed  Google Scholar 

  61. Decup F, Six N, Palmier B, Buch D, Lasfargues JJ, Salih E, Goldberg M. Bone sialoprotein-induced reparative dentinogenesis in the pulp of rat’s molar. Clin Oral Investig. 2000;4:110–9.

    Article  PubMed  Google Scholar 

  62. Goldberg M, Farges JC, Lacerda-Pinheiro S, Six N, Jegat N, Decup F, Septier D, Carrouel F, Durand S, Chaussain-Miller C, Denbesten P, Veis A, Poliard A. Inflammatory and immunological aspects of dental pulp repair. Pharmacol Res. 2008;58:137–47.

    Article  PubMed Central  PubMed  Google Scholar 

  63. Hensten-Pettersen A, Helgeland K. Evaluation of biologic effects of dental materials using four different cell culture techniques. Scand J Dent Res. 1977;85:291–6.

    PubMed  Google Scholar 

  64. Meryon SD, Jakeman KJ. An in vitro study of the role of dentine in moderating the cytotoxicity of zinc oxide eugenol cement. Biomaterials. 1986;7:459–62.

    Article  PubMed  Google Scholar 

  65. Trowbridge H, Edwall L, Panopoulos P. Effect of zinc oxide-eugenol and calcium hydroxide on intradental nerve activity. J Endod. 1982;8:403–6.

    Article  PubMed  Google Scholar 

  66. Sela J, Ulmansky M. Reaction of normal and inflamed dental pulp to Calxyl and zinc oxide and eugenol in rats. Oral Surg Oral Med Oral Pathol. 1970;30:425–30.

    Article  PubMed  Google Scholar 

  67. Imazato S, Kinomoto Y, Tarumi H, Torii M, Russell RR, McCabe JF. Incorporation of antibacterial monomer MDPB into dentin primer. J Dent Res. 1997;76:768–72.

    Article  PubMed  Google Scholar 

  68. Imazato S. Bio-active restorative materials with antibacterial effects: new dimension of innovation in restorative dentistry. Dent Mater J. 2009;28:11–9.

    Article  PubMed  Google Scholar 

  69. Muller R, Eidt A, Hiller KA, Katzur V, Subat M, Schweikl H, Imazato S, Ruhl S, Schmalz G. Influences of protein films on antibacterial or bacteria-repellent surface coatings in a model system using silicon wafers. Biomaterials. 2009;30:4921–9.

    Article  PubMed  Google Scholar 

  70. Schmalz G, Ergucu Z, Hiller KA. Effect of dentin on the antibacterial activity of dentin bonding agents. J Endod. 2004;30:352–8.

    Article  PubMed  Google Scholar 

  71. Zach L, Cohen G. Pulp response to externally applied heat. Oral Surg Oral Med Oral Pathol. 1965;19:515–30.

    Article  PubMed  Google Scholar 

  72. Guiraldo RD, Consani S, Consani RL, Berger SB, Correr AB, Sinhoreti MA, Correr-Sobrinho L. Comparison of silorane and methacrylate-based composites on the polymerization heat generated with different light-curing units and dentin thicknesses. Braz Dent J. 2013;24:258–62.

    Article  PubMed  Google Scholar 

  73. Oberholzer TG, Makofane ME, du Preez IC, George R. Modern high powered led curing lights and their effect on pulp chamber temperature of bulk and incrementally cured composite resin. Eur J Prosthodont Restor Dent. 2012;20:50–5.

    PubMed  Google Scholar 

  74. Baroudi K, Silikas N, Watts DC. In vitro pulp chamber temperature rise from irradiation and exotherm of flowable composites. Int J Paediatr Dent. 2009;19:48–54.

    Article  PubMed  Google Scholar 

  75. Santini A, Watterson C, Miletic V. Temperature rise within the pulp chamber during composite resin polymerisation using three different light sources. Open Dent J. 2008;2:137–41.

    Article  PubMed Central  PubMed  Google Scholar 

  76. de Souza PP, Hebling J, Scalon MG, Aranha AM, Costa CA. Effects of intrapulpal temperature change induced by visible light units on the metabolism of odontoblast-like cells. Am J Dent. 2009;22:151–6.

    PubMed  Google Scholar 

  77. Rueggeberg FA: heat development and temperature rise around the pulp. Cited in Bluephase Scientific Documentation 2013; www.ivoclarvivadent.us. Accessed Jan 2014.

  78. Kodonas K, Gogos C, Tziafa C. Effect of simulated pulpal microcirculation on intrachamber temperature changes following application of various curing units on tooth surface. J Dent. 2009;37:485–90.

    Article  PubMed  Google Scholar 

  79. Michaud PL, Price RB, Labrie D, Rueggeberg FA, Sullivan B. Localised irradiance distribution found in dental light curing units. J Dent. 2014;42(2):129–39.

    Article  PubMed  Google Scholar 

  80. Cox CF, Hafez AA, Akimoto N, Otsuki M, Suzuki S, Tarim B. Biocompatibility of primer, adhesive and resin composite systems on non-exposed and exposed pulps of non-human primate teeth. Am J Dent. 1998;11:S55–63.

    PubMed  Google Scholar 

  81. Pameijer CH, Stanley HR. The disastrous effects of the “total etch” technique in vital pulp capping in primates. Am J Dent. 1998;11:S45–54.

    PubMed  Google Scholar 

  82. Accorinte ML, Loguercio AD, Reis A, Costa CA. Response of human pulps capped with different self-etch adhesive systems. Clin Oral Investig. 2008;12:119–27.

    Article  PubMed  Google Scholar 

  83. Nowicka A, Parafiniuk M, Lipski M, Lichota D, Buczkowska-Radlinska J. Pulpo-dentin complex response after direct capping with self-etch adhesive systems. Folia Histochem Cytobiol. 2012;50:565–73.

    Article  PubMed  Google Scholar 

  84. Tziafas D, Koliniotou-Koumpia E, Tziafa C, Papadimitriou S. Effects of a new antibacterial adhesive on the repair capacity of the pulp-dentine complex in infected teeth. Int Endod J. 2007;40:58–66.

    Article  PubMed  Google Scholar 

  85. Stanislawski L, Lefeuvre M, Bourd K, Soheili-Majd E, Goldberg M, Perianin A. TEGDMA-induced toxicity in human fibroblasts is associated with early and drastic glutathione depletion with subsequent production of oxygen reactive species. J Biomed Mater Res A. 2003;66:476–82.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gottfried Schmalz DDS, DMD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schmalz, G. (2014). Pulp Reactions to Dental Materials. In: Goldberg, M. (eds) The Dental Pulp. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55160-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55160-4_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-55159-8

  • Online ISBN: 978-3-642-55160-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics