Skip to main content

Genetic Alterations: Heritable Dentin Defects

  • Chapter
  • First Online:
The Dental Pulp

Abstract

Dentin defects that accompany rare genetic diseases (diseases that by definition affect less than 1/2,000 individuals) can be described phenotypically by various types of anomalies that not only impair the formation and structure of the dentin and per se the color of the teeth but also cause anomalies of the crown, root, and/or pulp space shape and aberrant dentin formation such as pulpolithes or intrapulpal calcifications. They may also induce or be associated with subsequent enamel, dentin/enamel junction, or cementum/periodontium anomalies as dentinogenesis proceeds and occurs in coordination and interaction with amelogenesis and periodontium formation through epithelio-mesenchymal interactions. In this chapter, we will describe the genetic alterations of genes encoding proteins involved in dentin and bone formation reflecting the similarities between the two tissue development and homeostasis and subsequent clinical phenotypes. Animal models presenting with dentinal defects will also be mentioned.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Witkop Jr CJ. Hereditary defects of dentin. Dent Clin North Am. 1975;19(1):25–45.

    PubMed  Google Scholar 

  2. Bloch-Zupan A, Sedano H, Scully C. Dento/Oro/Craniofacial anomalies and genetics. 1st ed. London: Elsevier Inc; 2012.

    Google Scholar 

  3. Hart PS, Hart TC. Disorders of human dentin. Cells Tissues Organs. 2007;186(1):70–7.

    PubMed  Google Scholar 

  4. Xiao S, Yu C, Chou X, Yuan W, Wang Y, Bu L, et al. Dentinogenesis imperfecta 1 with or without progressive hearing loss is associated with distinct mutations in DSPP. Nat Genet. 2001;27(2):201–4.

    PubMed  Google Scholar 

  5. Barron MJ, McDonnell ST, Mackie I, Dixon MJ.Hereditary dentine disorders: dentinogenesis imperfecta and dentine dysplasia. Orphanet J Rare Dis. 2008;3:31.

    PubMed Central  PubMed  Google Scholar 

  6. Kim JW, Simmer JP. Hereditary dentin defects. J Dent Res. 2007;86(5):392–9.

    PubMed  Google Scholar 

  7. Shields ED, Bixler D, el-Kafrawy AM. A proposed classification for heritable human dentine defects with a description of a new entity. Arch Oral Biol. 1973;18(4):543–53.

    PubMed  Google Scholar 

  8. Kim JW, Hu JC, Lee JI, Moon SK, Kim YJ, Jang KT, et al. Mutational hot spot in the DSPP gene causing dentinogenesis imperfecta type II. Hum Genet. 2005;116(3):186–91.

    PubMed  Google Scholar 

  9. Lee KE, Kang HY, Lee SK, Yoo SH, Lee JC, Hwang YH, et al. Novel dentin phosphoprotein frameshift mutations in dentinogenesis imperfecta type II. Clin Genet. 2011;79(4):378–84.

    PubMed  Google Scholar 

  10. Lee SK, Hu JC, Lee KE, Simmer JP, Kim JW. A dentin sialophosphoprotein mutation that partially disrupts a splice acceptor site causes type II dentin dysplasia. J Endod. 2008;34(12):1470–3.

    PubMed Central  PubMed  Google Scholar 

  11. Lee SK, Lee KE, Jeon D, Lee G, Lee H, Shin CU, et al. A novel mutation in the DSPP gene associated with dentinogenesis imperfecta type II. J Dent Res. 2009;88(1):51–5.

    PubMed  Google Scholar 

  12. Lee SK, Lee KE, Song SJ, Hyun HK, Lee SH, Kim JW. A DSPP mutation causing dentinogenesis imperfecta and characterization of the mutational effect. Bio Med Res Int. 2013;2013:948181. [Research Support, Non-U.S. Gov’t].

    Google Scholar 

  13. MacDougall M. Dental structural diseases mapping to human chromosome 4q21. Connect Tissue Res. 2003;44 Suppl 1:285–91.

    PubMed  Google Scholar 

  14. Zhang X, Zhao J, Li C, Gao S, Qiu C, Liu P, et al. DSPP mutation in dentinogenesis imperfecta shields type II. Nat Genet. 2001;27(2):151–2.

    PubMed  Google Scholar 

  15. Lee SK, Lee KE, Hwang YH, Kida M, Tsutsumi T, Ariga T, et al. Identification of the DSPP mutation in a new kindred and phenotype-genotype correlation. Oral Dis. 2011;17(3):314–9. [Research Support, Non-U.S. Gov’t].

    PubMed  Google Scholar 

  16. Wang SK, Chan HC, Rajderkar S, Milkovich RN, Uston KA, Kim JW, et al. Enamel malformations associated with a defined dentin sialophosphoprotein mutation in two families. Eur J Oral Sci. 2011;119 Suppl 1:158–67. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    PubMed Central  PubMed  Google Scholar 

  17. Wieczorek A, Loster J. Dentinogenesis imperfecta type II: ultrastructure of teeth in sagittal sections. Folia Histochem Cytobiol. 2013;51(3):244–7.

    PubMed  Google Scholar 

  18. Levin LS, Leaf SH, Jelmini RJ, Rose JJ, Rosenbaum KN. Dentinogenesis imperfecta in the Brandywine isolate (DI type III): clinical, radiologic, and scanning electron microscopic studies of the dentition. Oral Surg Oral Med Oral Pathol. 1983;56(3):267–74.

    PubMed  Google Scholar 

  19. MacDougall M, Jeffords LG, Gu TT, Knight CB, Frei G, Reus BE, et al. Genetic linkage of the dentinogenesis imperfecta type III locus to chromosome 4q. J Dent Res. 1999;78(6):1277–82.

    PubMed  Google Scholar 

  20. McKnight DA, Simmer JP, Hart PS, Hart TC, Fisher LW. Overlapping DSPP mutations cause dentin dysplasia and dentinogenesis imperfecta. J Dent Res. 2008;87(12):1108–11.

    PubMed Central  PubMed  Google Scholar 

  21. McKnight DA, Suzanne Hart P, Hart TC, Hartsfield JK, Wilson A, Wright JT, et al. A comprehensive analysis of normal variation and disease-causing mutations in the human DSPP gene. Hum Mutat. 2008;29(12):1392–404.

    PubMed  Google Scholar 

  22. Rajpar MH, Koch MJ, Davies RM, Mellody KT, Kielty CM, Dixon MJ. Mutation of the signal peptide region of the bicistronic gene DSPP affects translocation to the endoplasmic reticulum and results in defective dentine biomineralization. Hum Mol Genet. 2002;11(21):2559–65.

    PubMed  Google Scholar 

  23. Nieminen P, Papagiannoulis-Lascarides L, Waltimo-Siren J, Ollila P, Karjalainen S, Arte S, et al. Frameshift mutations in dentin phosphoprotein and dependence of dentin disease phenotype on mutation location. J Bone Miner Res. 2011;26(4):873–80.

    PubMed  Google Scholar 

  24. Bloch-Zupan A, Jamet X, Etard C, Laugel V, Muller J, Geoffroy V, et al. Homozygosity mapping and candidate prioritization identify mutations, missed by whole-exome sequencing, in SMOC2, causing major dental developmental defects. Am J Hum Genet. 2011;89(6):773–81.

    PubMed Central  PubMed  Google Scholar 

  25. Alfawaz S, Fong F, Plagnol V, Wong FS, Fearne J, Kelsell DP. Recessive oligodontia linked to a homozygous loss-of-function mutation in the SMOC2 gene. Arch Oral Biol. 2013;58(5):462–6. [Research Support, Non-U.S. Gov’t].

    PubMed  Google Scholar 

  26. Parekh S, Kyriazidou A, Bloch-Zupan A, Roberts G. Multiple pulp stones and shortened roots of unknown etiology. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2006;101(6):e139–42.

    PubMed  Google Scholar 

  27. Opsahl Vital S, Gaucher C, Bardet C, Rowe PS, George A, Linglart A, et al. Tooth dentin defects reflect genetic disorders affecting bone mineralization. Bone. 2012;50(4):989–97.

    PubMed  Google Scholar 

  28. Wang SK, Chan HC, Makovey I, Simmer JP, Hu JC. Novel PAX9 and COL1A2 missense mutations causing tooth agenesis and OI/DGI without skeletal abnormalities. PLoS One. 2012;7(12):e51533.

    PubMed Central  PubMed  Google Scholar 

  29. Rohrbach M, Giunta C. Recessive osteogenesis imperfecta: clinical, radiological, and molecular findings. Am J Med Genet C: Semin Med Genet. 2012;160C(3):175–89.

    Google Scholar 

  30. Basel D, Steiner RD. Osteogenesis imperfecta: recent findings shed new light on this once well-understood condition. Genet Med. 2009;11(6):375–85.

    PubMed  Google Scholar 

  31. Christiansen HE, Schwarze U, Pyott SM, Alswaid A, Al Balwi M, Alrasheed S, et al. Homozygosity for a missense mutation in SERPINH1, which encodes the collagen chaperone protein HSP47, results in severe recessive osteogenesis imperfecta. Am J Hum Genet. 2010;86(3):389–98.

    PubMed Central  PubMed  Google Scholar 

  32. Homan EP, Rauch F, Grafe I, Lietman C, Doll JA, Dawson B, et al. Mutations in SERPINF1 cause osteogenesis imperfecta type VI. J Bone Miner Res. 2011;26(12):2798–803.

    PubMed Central  PubMed  Google Scholar 

  33. Lapunzina P, Aglan M, Temtamy S, Caparros-Martin JA, Valencia M, Leton R, et al. Identification of a frameshift mutation in Osterix in a patient with recessive osteogenesis imperfecta. Am J Hum Genet. 2010;87(1):110–4.

    PubMed Central  PubMed  Google Scholar 

  34. Martinez-Glez V, Valencia M, Caparros-Martin JA, Aglan M, Temtamy S, Tenorio J, et al. Identification of a mutation causing deficient BMP1/mTLD proteolytic activity in autosomal recessive osteogenesis imperfecta. Hum Mutat. 2012;33(2):343–50. [Research Support, Non-U.S. Gov’t].

    PubMed Central  PubMed  Google Scholar 

  35. Van Dijk FS, Nesbitt IM, Nikkels PG, Dalton A, Bongers EM, van de Kamp JM, et al. CRTAP mutations in lethal and severe osteogenesis imperfecta: the importance of combining biochemical and molecular genetic analysis. Eur J Hum Genet. 2009;17(12): 1560–9.

    PubMed Central  PubMed  Google Scholar 

  36. van Dijk FS, Nesbitt IM, Zwikstra EH, Nikkels PG, Piersma SR, Fratantoni SA, et al. PPIB mutations cause severe osteogenesis imperfecta. Am J Hum Genet. 2009;85(4):521–7.

    PubMed Central  PubMed  Google Scholar 

  37. Hall RK, Maniere MC, Palamara J, Hemmerle J. Odontoblast dysfunction in osteogenesis imperfecta: an LM, SEM, and ultrastructural study. Connect Tissue Res. 2002;43(2–3):401–5.

    PubMed  Google Scholar 

  38. Koreeda-Miura M, Onishi T, Ooshima T. Significance of histopathologic examination in the diagnosis of dentin defects associated with type IV osteogenesis imperfecta: two case reports. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2003;95(1):85–9.

    PubMed  Google Scholar 

  39. Kim OH, Jin DK, Kosaki K, Kim JW, Cho SY, Yoo WJ, et al. Osteogenesis imperfecta type V: clinical and radiographic manifestations in mutation confirmed patients. Am J Med Genet A. 2013;161A(8):1972–9.

    PubMed  Google Scholar 

  40. Kamoun-Goldrat AS, Le Merrer MF. Osteogenesis imperfecta and dentinogenesis imperfecta: diagnostic frontiers and importance in dentofacial orthopedics. Orthod Fr. 2007;78(2):89–99.

    PubMed  Google Scholar 

  41. Waltimo-Siren J, Kolkka M, Pynnonen S, Kuurila K, Kaitila I, Kovero O. Craniofacial features in osteogenesis imperfecta: a cephalometric study. Am J Med Genet A. 2005;133A(2):142–50.

    PubMed  Google Scholar 

  42. Malmgren B, Lindskog S. Assessment of dysplastic dentin in osteogenesis imperfecta and dentinogenesis imperfecta. Acta Odontol Scand. 2003;61(2):72–80.

    PubMed  Google Scholar 

  43. Rauch F, Lalic L, Roughley P, Glorieux FH. Genotype-phenotype correlations in nonlethal osteogenesis imperfecta caused by mutations in the helical domain of collagen type I. Eur J Hum Genet. 2010;18(6):642–7.

    PubMed Central  PubMed  Google Scholar 

  44. Byers PH, Murray ML. Heritable collagen disorders: the paradigm of the Ehlers-Danlos syndrome. J Invest Dermatol. 2012;132(E1):E6–11.

    PubMed  Google Scholar 

  45. De Coster PJ, Cornelissen M, De Paepe A, Martens LC, Vral A. Abnormal dentin structure in two novel gene mutations [COL1A1, Arg134Cys] and [ADAMTS2, Trp795-to-ter] causing rare type I collagen disorders. Arch Oral Biol. 2007;52(2):101–9.

    PubMed  Google Scholar 

  46. Pope FM, Komorowska A, Lee KW, Speight P, Zorawska H, Ranta H, et al. Ehlers Danlos syndrome type I with novel dental features. J Oral Pathol Med. 1992;21(9):418–21.

    PubMed  Google Scholar 

  47. Ferre FC, Frank M, Gogly B, Golmard L, Naveau A, Cherifi H, et al. Oral phenotype and scoring of vascular Ehlers-Danlos syndrome: a case-control study. BMJ Open. 2012;2(2):e000705.

    PubMed Central  PubMed  Google Scholar 

  48. Fukada T, Civic N, Furuichi T, Shimoda S, Mishima K, Higashiyama H, et al. The zinc transporter SLC39A13/ZIP13 is required for connective tissue development; its involvement in BMP/TGF-beta signaling pathways. PLoS One. 2008;3(11):e3642.

    PubMed Central  PubMed  Google Scholar 

  49. Foster BL, Nociti Jr FH, Somerman MJ. The rachitic tooth. Endocr Rev. 2014;35(1):1–34.

    PubMed  Google Scholar 

  50. Holm IA, Nelson AE, Robinson BG, Mason RS, Marsh DJ, Cowell CT, et al. Mutational analysis and genotype-phenotype correlation of the PHEX gene in X-linked hypophosphatemic rickets. J Clin Endocrinol Metab. 2001;86(8):3889–99.

    PubMed  Google Scholar 

  51. Lorenz-Depiereux B, Bastepe M, Benet-Pages A, Amyere M, Wagenstaller J, Muller-Barth U, et al. DMP1 mutations in autosomal recessive hypophosphatemia implicate a bone matrix protein in the regulation of phosphate homeostasis. Nat Genet. 2006;38(11):1248–50.

    PubMed  Google Scholar 

  52. Nociti Jr FH, Foster BL, Tran AB, Dunn D, Presland RB, Wang L, et al. Vitamin D represses dentin matrix protein 1 in cementoblasts and osteocytes. J Dent Res. 2014;93(2):148–54.

    PubMed  Google Scholar 

  53. Salmon B, Bardet C, Khaddam M, Naji J, Coyac BR, Baroukh B, et al. MEPE-derived ASARM peptide inhibits odontogenic differentiation of dental pulp stem cells and impairs mineralization in tooth models of X-linked hypophosphatemia. PLoS One. 2013;8(2):e56749.

    PubMed Central  PubMed  Google Scholar 

  54. Rangiani A, Cao ZG, Liu Y, Voisey Rodgers A, Jiang Y, Qin CL, et al. Dentin matrix protein 1 and phosphate homeostasis are critical for postnatal pulp, dentin and enamel formation. Int J Oral Sci. 2012;4(4):189–95.

    PubMed Central  PubMed  Google Scholar 

  55. Pereira CM, de Andrade CR, Vargas PA, Coletta RD, de Almeida OP, Lopes MA. Dental alterations associated with X-linked hypophosphatemic rickets. J Endod. 2004;30(4):241–5.

    PubMed  Google Scholar 

  56. Yamamoto T. Diagnosis of X-linked hypophosphatemic vitamin D resistant rickets. Acta Paediatr Jpn. 1997;39(4):499–502.

    PubMed  Google Scholar 

  57. Baroncelli GI, Angiolini M, Ninni E, Galli V, Saggese R, Giuca MR. Prevalence and pathogenesis of dental and periodontal lesions in children with X-linked hypophosphatemic rickets. Eur J Paediatr Dent. 2006;7(2):61–6.

    PubMed  Google Scholar 

  58. Batra P, Tejani Z, Mars M. X-linked hypophosphatemia: dental and histologic findings. J Can Dent Assoc. 2006;72(1):69–72.

    PubMed  Google Scholar 

  59. Chaussain-Miller C, Sinding C, Septier D, Wolikow M, Goldberg M, Garabedian M. Dentin structure in familial hypophosphatemic rickets: benefits of vitamin D and phosphate treatment. Oral Dis. 2007;13(5):482–9.

    PubMed  Google Scholar 

  60. Chaussain-Miller C, Sinding C, Wolikow M, Lasfargues JJ, Godeau G, Garabedian M. Dental abnormalities in patients with familial hypophosphatemic vitamin D-resistant rickets: prevention by early treatment with 1-hydroxyvitamin D. J Pediatr. 2003;142(3):324–31.

    PubMed  Google Scholar 

  61. Rafaelsen SH, Raeder H, Fagerheim AK, Knappskog P, Carpenter TO, Johansson S, et al. Exome sequencing reveals FAM20c mutations associated with fibroblast growth factor 23-related hypophosphatemia, dental anomalies, and ectopic calcification. J Bone Miner Res. 2013;28(6):1378–85.

    PubMed  Google Scholar 

  62. Wang X, Wang S, Lu Y, Gibson MP, Liu Y, Yuan B, et al. FAM20C plays an essential role in the formation of murine teeth. J Biol Chem. 2012;287(43):35934–42.

    PubMed Central  PubMed  Google Scholar 

  63. Tagliabracci VS, Engel JL, Wen J, Wiley SE, Worby CA, Kinch LN, et al. Secreted kinase phosphorylates extracellular proteins that regulate biomineralization. Science. 2012;336(6085):1150–3.

    PubMed Central  PubMed  Google Scholar 

  64. Mornet E, Hofmann C, Bloch-Zupan A, Girschick H, Le Merrer M. Clinical utility gene card for: hypophosphatasia – update 2013. Eur J Hum Gen: EJHG. 2014;22(4):e1–6.

    Google Scholar 

  65. Mornet E. Hypophosphatasia. Orphanet J Rare Dis. 2007;2:40.

    PubMed Central  PubMed  Google Scholar 

  66. Spentchian M, Merrien Y, Herasse M, Dobbie Z, Glaser D, Holder SE, et al. Severe hypophosphatasia: characterization of fifteen novel mutations in the ALPL gene. Hum Mutat. 2003;22(1):105–6.

    PubMed  Google Scholar 

  67. Mornet E, Simon-Bouy B. Genetics of hypophosphatasia. Arch Pediatr. 2004;11(5):444–8.

    PubMed  Google Scholar 

  68. Mornet E. Hypophosphatasia: the mutations in the tissue-nonspecific alkaline phosphatase gene. Hum Mutat. 2000;15(4):309–15.

    PubMed  Google Scholar 

  69. Fauvert D, Brun-Heath I, Lia-Baldini AS, Bellazi L, Taillandier A, Serre JL, et al. Mild forms of hypophosphatasia mostly result from dominant negative effect of severe alleles or from compound heterozygosity for severe and moderate alleles. BMC Med Genet. 2009;10:51.

    PubMed Central  PubMed  Google Scholar 

  70. Berkseth KE, Tebben PJ, Drake MT, Hefferan TE, Jewison DE, Wermers RA. Clinical spectrum of hypophosphatasia diagnosed in adults. Bone. 2013;54(1):21–7.

    PubMed  Google Scholar 

  71. Reibel A, Maniere MC, Clauss F, Droz D, Alembik Y, Mornet E, et al. Orodental phenotype and genotype findings in all subtypes of hypophosphatasia. Orphanet J Rare Dis. 2009;4:6.

    PubMed Central  PubMed  Google Scholar 

  72. Hotton D, Mauro N, Lezot F, Forest N, Berdal A. Differential expression and activity of tissue-nonspecific alkaline phosphatase (TNAP) in rat odontogenic cells in vivo. J Histochem Cytochem. 1999;47(12):1541–52.

    PubMed  Google Scholar 

  73. Fedde KN, Blair L, Silverstein J, Coburn SP, Ryan LM, Weinstein RS, et al. Alkaline phosphatase knock-out mice recapitulate the metabolic and skeletal defects of infantile hypophosphatasia. J Bone Miner Res. 1999;14(12):2015–26.

    PubMed Central  PubMed  Google Scholar 

  74. Millan JL, Narisawa S, Lemire I, Loisel TP, Boileau G, Leonard P, et al. Enzyme replacement therapy for murine hypophosphatasia. J Bone Miner Res. 2008;23(6):777–87.

    PubMed Central  PubMed  Google Scholar 

  75. Foster BL, Nagatomo KJ, Tso HW, Tran AB, Nociti Jr FH, Narisawa S, et al. Tooth root dentin mineralization defects in a mouse model of hypophosphatasia. J Bone Miner Res. 2013;28(2):271–82.

    PubMed Central  PubMed  Google Scholar 

  76. McKee MD, Nakano Y, Masica DL, Gray JJ, Lemire I, Heft R, et al. Enzyme replacement therapy prevents dental defects in a model of hypophosphatasia. J Dent Res. 2011;90(4):470–6.

    PubMed Central  PubMed  Google Scholar 

  77. Whyte MP, Greenberg CR, Salman NJ, Bober MB, McAlister WH, Wenkert D, et al. Enzyme-replacement therapy in life-threatening hypophosphatasia. N Engl J Med. 2012;366(10):904–13.

    PubMed  Google Scholar 

  78. Millan JL. The role of phosphatases in the initiation of skeletal mineralization. Calcif Tissue Int. 2013;93(4):299–306.

    PubMed  Google Scholar 

  79. McKee MD, Yadav MC, Foster BL, Somerman MJ, Farquharson C, Millan JL. Compounded PHOSPHO1/ALPL deficiencies reduce dentin mineralization. J Dent Res. 2013;92(8):721–7.

    PubMed  Google Scholar 

  80. Bonaventure J, Stanescu R, Stanescu V, Allain JC, Muriel MP, Ginisty D, et al. Type II collagen defect in two sibs with the Goldblatt syndrome, a chondrodysplasia with dentinogenesis imperfecta, and joint laxity. Am J Med Genet. 1992;44(6):738–53.

    PubMed  Google Scholar 

  81. Goldblatt J, Carman P, Sprague P. Unique dwarfing, spondylometaphyseal skeletal dysplasia, with joint laxity and dentinogenesis imperfecta. Am J Med Genet. 1991;39(2):170–2.

    PubMed  Google Scholar 

  82. Unger S, Antoniazzi F, Brugnara M, Alanay Y, Caglayan A, Lachlan K, et al. Clinical and radiographic delineation of odontochondrodysplasia. Am J Med Genet A. 2008;146A(6):770–8.

    PubMed  Google Scholar 

  83. Castori M, Cascone P, Valiante M, Laino L, Iannetti G, Hennekam RC, et al. Elsahy-Waters syndrome: evidence for autosomal recessive inheritance. Am J Med Genet A. 2010;152A(11):2810–5.

    PubMed  Google Scholar 

  84. Rauch A. The shortest of the short: pericentrin mutations and beyond. Best Pract Res Clin Endocrinol Metab. 2011;25(1):125–30.

    PubMed  Google Scholar 

  85. Rauch A, Thiel CT, Schindler D, Wick U, Crow YJ, Ekici AB, et al. Mutations in the pericentrin (PCNT) gene cause primordial dwarfism. Science. 2008;319(5864):816–9.

    PubMed  Google Scholar 

  86. Kantaputra P, Tanpaiboon P, Porntaveetus T, Ohazama A, Sharpe P, Rauch A, et al. The smallest teeth in the world are caused by mutations in the PCNT gene. Am J Med Genet A. 2011;155A(6):1398–403.

    PubMed  Google Scholar 

  87. Kantaputra PN, Tanpaiboon P, Unachak K, Praphanphoj V. Microcephalic osteodysplastic primordial dwarfism with severe microdontia and skin anomalies: confirmation of a new syndrome. Am J Med Genet A. 2004;130(2):181–90.

    Google Scholar 

  88. Hunter KB, Lucke T, Spranger J, Smithson SF, Alpay H, Andre JL, et al. Schimke immunoosseous dysplasia: defining skeletal features. Eur J Pediatr. 2010;169(7):801–11.

    PubMed Central  PubMed  Google Scholar 

  89. Morimoto M, Kerouredan O, Gendronneau M, Shuen C, Baradaran-Heravi A, Asakura Y, et al. Dental abnormalities in Schimke immuno-osseous dysplasia. J Dent Res. 2012;91(7 Suppl):29S–37.

    PubMed  Google Scholar 

  90. Parvari R, Hershkovitz E, Grossman N, Gorodischer R, Loeys B, Zecic A, et al. Mutation of TBCE causes hypoparathyroidism-retardation-dysmorphism and autosomal recessive Kenny-Caffey syndrome. Nat Genet. 2002;32(3):448–52.

    PubMed  Google Scholar 

  91. Moussaid Y, Griffiths D, Richard B, Dieux A, Lemerrer M, Leger J, et al. Oral manifestations of patients with Kenny-Caffey syndrome. Eur J Med Genet. 2012;55(8–9):441–5. [Review].

    PubMed  Google Scholar 

  92. Unger S, Gorna MW, Le Bechec A, Do Vale-Pereira S, Bedeschi MF, Geiberger S, et al. FAM111A mutations result in hypoparathyroidism and impaired skeletal development. Am J Hum Genet. 2013;92(6):990–5.

    PubMed Central  PubMed  Google Scholar 

  93. Gao L, Guo H, Ye N, Bai Y, Liu X, Yu P, et al. Oral and craniofacial manifestations and two novel missense mutations of the NTRK1 gene identified in the patient with congenital insensitivity to pain with anhidrosis. PLoS One. 2013;8(6):e66863.

    PubMed Central  PubMed  Google Scholar 

  94. Duan X. Ion channels, channelopathies, and tooth formation. J Dent Res. 2014;93(2):117–25.

    PubMed  Google Scholar 

  95. Goldberg M, Septier D. Phospholipids in amelogenesis and dentinogenesis. Crit Rev Oral Biol Med. 2002;13(3):276–90.

    PubMed  Google Scholar 

  96. Goldberg M, Septier D, Lecolle S, Vermelin L, Bissila-Mapahou P, Carreau JP, et al. Lipids in predentine and dentine. Connect Tissue Res. 1995;33(1–3):105–14.

    PubMed  Google Scholar 

  97. Goldberg M, Opsahl S, Aubin I, Septier D, Chaussain-Miller C, Boskey A, et al. Sphingomyelin degradation is a key factor in dentin and bone mineralization: lessons from the fro/fro mouse. The chemistry and histochemistry of dentin lipids. J Dent Res. 2008;87(1):9–13.

    PubMed Central  PubMed  Google Scholar 

  98. Bloch-Zupan A, Lecolle S, Goldberg M. Galactosylceramide lipidosis (Krabbe’s disease) and deciduous dental tissues. A case report. J Submicrosc Cytol Pathol. 1994;26(3):425–35.

    PubMed  Google Scholar 

  99. Goldberg M, Gritli A, Bloch-Zupan A, Septier D, Lecolle S, Legrand JM. Effets des maladies de surcharge lysosomale sur l’odontogenèse. Entretiens de Bichat – Oodntologie et Stomatologie, Expansion Scientifique Française 1992:7–11.

    Google Scholar 

  100. Goldberg M, Gritli A, Bloch-Zupan A, Septier D, Lecolle S, Legrand JM, et al. Lysosomal storage diseases, genetic or drug-induced? Effect of glycosaminoglycan and sphingolipid disorders on dental tissues. C R Seances Soc Biol Fil. 1993;187(5):596–607.

    PubMed  Google Scholar 

  101. Goldberg M, Gritli A, Bloch-Zupan A, Septier D, Lecolle S, Legrand JM, et al. Maladies de surcharge lysosomale, génétiques ou induites pharmacologiquement: effets de pathologies de glycosaminoglycanes et de sphingolipides sur les tissus dentaires. C R Soc Biol. 1993;187:596–607.

    Google Scholar 

  102. Aubin I, Adams CP, Opsahl S, Septier D, Bishop CE, Auge N, et al. A deletion in the gene encoding sphingomyelin phosphodiesterase 3 (Smpd3) results in osteogenesis and dentinogenesis imperfecta in the mouse. Nat Genet. 2005;37(8):803–5.

    PubMed  Google Scholar 

  103. Ye L, Le TQ, Zhu L, Butcher K, Schneider RA, Li W, et al. Amelogenins in human developing and mature dental pulp. J Dent Res. 2006;85(9):814–8.

    PubMed Central  PubMed  Google Scholar 

  104. White SN, Paine ML, Ngan AY, Miklus VG, Luo W, Wang H, et al. Ectopic expression of dentin sialoprotein during amelogenesis hardens bulk enamel. J Biol Chem. 2007;282(8):5340–5.

    PubMed  Google Scholar 

  105. Crawford PJ, Aldred M, Bloch-Zupan A.Amelogenesis imperfecta. Orphanet J Rare Dis. 2007;2:17.

    PubMed Central  PubMed  Google Scholar 

  106. Cho SH, Seymen F, Lee KE, Lee SK, Kweon YS, Kim KJ, et al. Novel FAM20A mutations in hypoplastic amelogenesis imperfecta. Hum Mutat. 2012;33(1):91–4.

    PubMed  Google Scholar 

  107. Kantaputra PN, Kaewgahya M, Khemaleelakul U, Dejkhamron P, Sutthimethakorn S, Thongboonkerd V, et al. Enamel-renal-gingival syndrome and FAM20A mutations. Am J Med Genet A. 2014;164(1):1–9.

    Google Scholar 

  108. Jaureguiberry G, De la Dure-Molla M, Parry D, Quentric M, Himmerkus N, Koike T, et al. Nephrocalcinosis (enamel renal syndrome) caused by autosomal recessive FAM20A mutations. Nephron Physiol. 2013;122(1–2):1–6.

    PubMed Central  Google Scholar 

  109. O’Sullivan J, Bitu CC, Daly SB, Urquhart JE, Barron MJ, Bhaskar SS, et al. Whole-Exome sequencing identifies FAM20A mutations as a cause of amelogenesis imperfecta and gingival hyperplasia syndrome. Am J Hum Genet. 2011;88(5):616–20.

    PubMed Central  PubMed  Google Scholar 

  110. Parry DA, Mighell AJ, El-Sayed W, Shore RC, Jalili IK, Dollfus H, et al. Mutations in CNNM4 cause Jalili syndrome, consisting of autosomal-recessive cone-rod dystrophy and amelogenesis imperfecta. Am J Hum Genet. 2009;84(2):266–73.

    PubMed Central  PubMed  Google Scholar 

  111. Jalili IK. Cone-rod dystrophy and amelogenesis imperfecta (Jalili syndrome): phenotypes and environs. Eye (Lond). 2010;24(11):1659–68.

    Google Scholar 

  112. Gomez Garcia I, Oyenarte I, Martinez-Cruz LA. Purification, crystallization and preliminary crystallographic analysis of the CBS pair of the human metal transporter CNNM4. Acta Crystallogr Sect F: Struct Biol Cryst Commun. 2011;67(Pt 3):349–53.

    Google Scholar 

  113. Luder HU, Gerth-Kahlert C, Ostertag-Benzinger S, Schorderet DF. Dental phenotype in Jalili syndrome due to a c.1312 dupC homozygous mutation in the CNNM4 gene. PLoS One. 2013;8(10):e78529.

    PubMed Central  PubMed  Google Scholar 

  114. Dong J, Amor D, Aldred MJ, Gu T, Escamilla M, MacDougall M. DLX3 mutation associated with autosomal dominant amelogenesis imperfecta with taurodontism. Am J Med Genet A. 2005;133(2):138–41.

    Google Scholar 

  115. Haldeman RJ, Cooper LF, Hart TC, Phillips C, Boyd C, Lester GE, et al. Increased bone density associated with DLX3 mutation in the tricho-dento-osseous syndrome. Bone. 2004;35(4):988–97.

    PubMed  Google Scholar 

  116. Lee SK, Lee ZH, Lee SJ, Ahn BD, Kim YJ, Lee SH, et al. DLX3 mutation in a new family and its phenotypic variations. J Dent Res. 2008;87(4):354–7.

    PubMed  Google Scholar 

  117. Nieminen P, Lukinmaa PL, Alapulli H, Methuen M, Suojarvi T, Kivirikko S, et al. DLX3 homeodomain mutations cause tricho-dento-osseous syndrome with novel phenotypes. Cells Tissues Organs. 2011;194(1):49–59.

    PubMed  Google Scholar 

  118. Lim WH, Liu B, Cheng D, Hunter DJ, Zhong Z, Ramos DM, et al. Wnt signaling regulates pulp volume and dentin thickness. J Bone Miner Res. 2014;29(4):892–901.

    PubMed  Google Scholar 

  119. Wang Y, Cox MK, Coricor G, MacDougall M, Serra R. Inactivation of Tgfbr2 in Osterix-Cre expressing dental mesenchyme disrupts molar root formation. Dev Biol. 2013;382(1):27–37. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    PubMed  Google Scholar 

  120. Zhang R, Yang G, Wu X, Xie J, Yang X, Li T. Disruption of Wnt/beta-catenin signaling in odontoblasts and cementoblasts arrests tooth root development in postnatal mouse teeth. Int J Biol Sci. 2013;9(3):228–36.

    PubMed Central  PubMed  Google Scholar 

  121. Hayano S, Kurosaka H, Yanagita T, Kalus I, Milz F, Ishihara Y, et al. Roles of heparan sulfate sulfation in dentinogenesis. J Biol Chem. 2012;287(15):12217–29. [Research Support, Non-U.S. Gov’t].

    PubMed Central  PubMed  Google Scholar 

  122. Zhang Y, Kim SO, Opsahl-Vital S, Ho SP, Souron JB, Kim C, et al. Multiple effects of the cellular prion protein on tooth development. Int J Dev Biol. 2011;55(10–12):953–60. [Research Support, N.I.H., Extramural].

    PubMed  Google Scholar 

  123. Feierabend S, Bloch-Zupan A, Hellwig E, Frei O, Wolff A, Moog U, et al. Seltene Erkrankungen – relevant für den Zahnarzt? Evidence-based dentistry – current advice for the practitioner. Case 7: rare diseases – relevant to dentists? Deutscher Ärzte-Verlag | DZZ | Deutsche Zahnärztliche Zeitschrift. 2012;67(12):14–18.

    Google Scholar 

  124. Bloch-Zupan A, Maniere MC. Manifestations Odontologiques des Maladies Rares. Centre de Référence de Strasbourg. Alpha Omega News. 2008;118:4–6.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnès Bloch-Zupan HDR, PhD, DDS .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bloch-Zupan, A. (2014). Genetic Alterations: Heritable Dentin Defects. In: Goldberg, M. (eds) The Dental Pulp. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55160-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55160-4_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-55159-8

  • Online ISBN: 978-3-642-55160-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics