Skip to main content

Composition and Setting Reaction

  • Chapter
  • First Online:

Abstract

Mineral trioxide aggregate (MTA) has been introduced as a root-end filling material due to its hydraulic properties since most dental materials deteriorate when in contact with moisture. This chapter looks into the composition of un-hydrated MTA, the properties of the freshly mixed material and the characteristics of the set cement. Un-hydrated MTA is composed of tricalcium and dicalcium silicate, tricalcium aluminate and bismuth oxide. On addition of water, the MTA hydrates and forms calcium hydroxide and calcium silicate hydrate together with small quantities of ettringite and monosulphate phases. Chemical and mineral additives modify the properties of fresh and set MTA. These additives are used mostly to reduce the setting time, improve the workability, enhance the properties of the set material and reduce material washout. The use of Portland cement can increase the risk of trace element incorporation in MTA, and bismuth oxide has been reported to interfere with the material hydration.

Several characterisation techniques have been used to assess both the un-hydrated and hydrated cement. Scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS) provide data on both the material surface characteristics and microstructure and also allow the determination of the extent of hydration by observation of the formation of hydration products in polished sections. EDS analysis provides information on the elemental analysis. Since the cement components and bismuth oxide are crystalline, phase analysis accomplished by X-ray diffractometry (XRD) provides data on the phases present in both the un-hydrated and the hydrated MTA. Other techniques such as laser Raman and Fourier transform infrared spectroscopy (FT-IR), together with the XRD and SEM/EDS thus, provide information on composition and hydration of MTA.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abdullah D, Ford TR, Papaioannou S, Nicholson J, McDonald F. An evaluation of accelerated Portland cement as a restorative material. Biomaterials. 2002;23(19):4001–10.

    Article  PubMed  Google Scholar 

  2. American Standards for Testing Materials. ASTM C150/C150M – 12; Standard specification for Portland cement. West Conshohocken: ASTM International; 2011.

    Google Scholar 

  3. American Standards for Testing Materials. ASTM C204 – 11 Standard Test Methods for fineness of hydraulic cement by air-permeability apparatus. West Conshohocken: ASTM International; 2011.

    Google Scholar 

  4. Antunes Bortoluzzi E, Juárez Broon N, Antonio Hungaro Duarte M, de Oliveira Demarchi AC, Monteiro Bramante C. The use of a setting accelerator and its effect on pH and calcium ion release of mineral trioxide aggregate and white Portland cement. J Endod. 2006;32(12):1194–7.

    Article  PubMed  Google Scholar 

  5. Asgary S, Parirokh M, Eghbal MJ, Stowe S, Brink F. A qualitative X-ray analysis of white and grey mineral trioxide aggregate using compositional imaging. J Mater Sci Mater Med. 2006;17(2):187–91.

    Article  PubMed  Google Scholar 

  6. Basturk FB, Nekoofar MH, Günday M, Dummer PM. The effect of various mixing and placement techniques on the compressive strength of mineral trioxide aggregate. J Endod. 2013;39(1):111–4.

    Article  PubMed  Google Scholar 

  7. Belío-Reyes IA, Bucio L, Cruz-Chavez E. Phase composition of ProRoot mineral trioxide aggregate by X-ray powder diffraction. J Endod. 2009;35(6):875–8.

    Article  PubMed  Google Scholar 

  8. Bensted J. Uses of Raman spectroscopy in cement chemistry. J Am Ceram Soc. 1976;59:140–3.

    Article  Google Scholar 

  9. Ber BS, Hatton JF, Stewart GP. Chemical modification of ProRoot MTA to improve handling characteristics and decrease setting time. J Endod. 2007;33(10):1231–4.

    Article  PubMed  Google Scholar 

  10. Bortoluzzi EA, Broon NJ, Bramante CM, Felippe WT, Tanomaru Filho M, Esberard RM. The influence of calcium chloride on the setting time, solubility, disintegration, and pH of mineral trioxide aggregate and white Portland cement with a radiopacifier. J Endod. 2009;35(4):550–4.

    Article  PubMed  Google Scholar 

  11. Bryan TE, Khechen K, Brackett MG, Messer RL, El-Awady A, Primus CM, Gutmann JL, Tay FR. In vitro osteogenic potential of an experimental calcium silicate-based root canal sealer. J Endod. 2010;36(7):1163–9.

    Article  PubMed  Google Scholar 

  12. Brunauer S, Emmett P, Teller E. Adsorption of gases in multimolecular layers. J Am Chem Soc. 1938;60:309–19.

    Article  Google Scholar 

  13. Camilleri J, Formosa L, Damidot D. The setting characteristics of MTA Plus in different environmental conditions. Int Endod J. 2013;46(9):831–40.

    Article  PubMed  Google Scholar 

  14. Camilleri J, Gandolfi MG, Siboni F, Prati C. Dynamic sealing ability of MTA root canal sealer. Int Endod J. 2011;44(1):9–20.

    Article  PubMed  Google Scholar 

  15. Camilleri J, Gandolfi MG. Evaluation of the radiopacity of calcium silicate cements containing different radiopacifiers. Int Endod J. 2010;43(1):21–30.

    Article  PubMed  Google Scholar 

  16. Camilleri J, Mallia B. Evaluation of the dimensional changes of mineral trioxide aggregate sealer. Int Endod J. 2011;44(5):416–24.

    Article  PubMed  Google Scholar 

  17. Camilleri J, Sorrentino F, Damidot D. Investigation of the hydration and bioactivity of radiopacified tricalcium silicate cement, Biodentine and MTA Angelus. Dent Mater. 2013;29(5):580–93.

    Article  PubMed  Google Scholar 

  18. Camilleri J. Characterization of hydration products of mineral trioxide aggregate. Int Endod J. 2008;41(5):408–17.

    Article  PubMed  Google Scholar 

  19. Camilleri J. Evaluation of selected properties of mineral trioxide aggregate sealer cement. J Endod. 2009;35(10):1412–7.

    Article  PubMed  Google Scholar 

  20. Camilleri J. Evaluation of the physical properties of an endodontic Portland cement incorporating alternative radiopacifiers used as root-end filling material. Int Endod J. 2010;43(3):231–40.

    Article  PubMed  Google Scholar 

  21. Camilleri J. Hydration mechanisms of mineral trioxide aggregate. Int Endod J. 2007;40(6):462–70.

    Article  PubMed  Google Scholar 

  22. Camilleri J, Kralj P, Veber M, Sinagra E. Characterization and analyses of acid-extractable and leached trace elements in dental cements. Int Endod J. 2012;45(8):737–43.

    Article  PubMed  Google Scholar 

  23. Chang SW, Baek SH, Yang HC, Seo DG, Hong ST, Han SH, Lee Y, Gu Y, Kwon HB, Lee W, Bae KS, Kum KY. Heavy metal analysis of ortho MTA and ProRoot MTA. J Endod. 2011;37(12):1673–6.

    Article  PubMed  Google Scholar 

  24. Chen CC, Lai MH, Wang WC, Ding SJ. Properties of anti-washout-type calcium silicate bone cements containing gelatin. J Mater Sci Mater Med. 2010;21(4):1057–68.

    Article  PubMed  Google Scholar 

  25. Chng HK, Islam I, Yap AU, Tong YW, Koh ET. Properties of a new root-end filling material. J Endod. 2005;31(9):665–8.

    Article  PubMed  Google Scholar 

  26. Chung H, Kim M, Ko H, Yang W. Evaluation of physical and biologic properties of the mixture of mineral trioxide aggregate and 4-META/MMA-TBB resin. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2011;112(5):e6–11.

    Article  PubMed  Google Scholar 

  27. Coleman NJ, Awosanya K, Nicholson JW. A preliminary investigation of the in vitro bioactivity of white Portland cement. Cem Conc Res. 2007;37:1518–23.

    Article  Google Scholar 

  28. Comin-Chiaramonti L, Cavalleri G, Sbaizero O, Comin-Chiaramonti P. Crystallochemical comparison between Portland cements and mineral trioxide aggregate (MTA). J Appl Biomater Biomech. 2009;7(3):171–8.

    PubMed  Google Scholar 

  29. Cutajar A, Mallia B, Abela S, Camilleri J. Replacement of radiopacifier in mineral trioxide aggregate; characterization and determination of physical properties. Dent Mater. 2011;27(9):879–91.

    Article  PubMed  Google Scholar 

  30. Dammaschke T, Gerth HU, Züchner H, Schäfer E. Chemical and physical surface and bulk material characterization of white ProRoot MTA and two Portland cements. Dent Mater. 2005;21(8):731–8.

    Article  PubMed  Google Scholar 

  31. De-Deus G, de Souza MC, Sergio Fidel RA, Fidel SR, de Campos RC, Luna AS. Negligible expression of arsenic in some commercially available brands of Portland cement and mineral trioxide aggregate. J Endod. 2009;35(6):887–90.

    Article  PubMed  Google Scholar 

  32. Duarte MA, De Oliveira Demarchi AC, Yamashita JC, Kuga MC, De Campos FS. Arsenic release provided by MTA and Portland cement. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2005;99(5):648–50.

    Article  PubMed  Google Scholar 

  33. Duarte MA, Alves de Aguiar K, Zeferino MA, Vivan RR, Ordinola-Zapata R, Tanomaru-Filho M, Weckwerth PH, Kuga MC. Evaluation of the propylene glycol association on some physical and chemical properties of mineral trioxide aggregate. Int Endod J. 2012;45(6):565–70.

    Article  PubMed  Google Scholar 

  34. European Standards. BS EN 196-6:2010. Methods of testing cement. Determination of fineness. London: British Standards Institutions; 2010.

    Google Scholar 

  35. Formosa LM, Mallia B, Bull T, Camilleri J. The microstructure and surface morphology of radiopaque tricalcium silicate cement exposed to different curing conditions. Dent Mater. 2012;28(5):584–95.

    Article  PubMed  Google Scholar 

  36. Formosa LM, Mallia B, Camilleri J. The chemical properties of light- and chemical-curing composites with mineral trioxide aggregate filler. Dent Mater. 2013;29(2):e11–9.

    Article  PubMed  Google Scholar 

  37. Formosa LM, Mallia B, Camilleri J. Mineral trioxide aggregate with anti-washout gel – properties and microstructure. Dent Mater. 2013;29(3):294–306.

    Article  PubMed  Google Scholar 

  38. Formosa LM, Mallia B, Camilleri J. A quantitative method for determining the antiwashout characteristics of cement-based dental materials including mineral trioxide aggregate. Int Endod J. 2013;46(2):179–86.

    Article  PubMed  Google Scholar 

  39. Fridland M, Rosado R. Mineral trioxide aggregate (MTA) solubility and porosity with different water-to-powder ratios. J Endod. 2003;29(12):814–7.

    Article  PubMed  Google Scholar 

  40. Gandolfi MG, Perut F, Ciapetti G, Mongiorgi R, Prati C. New Portland cement-based materials for endodontics mixed with articaine solution: a study of cellular response. J Endod. 2008;34(1):39–44.

    Article  PubMed  Google Scholar 

  41. Gandolfi MG, Shah SN, Feng R, Prati C, Akintoye SO. Biomimetic calcium-silicate cements support differentiation of human orofacial mesenchymal stem cells. J Endod. 2011;37(8):1102–8.

    Article  PubMed Central  PubMed  Google Scholar 

  42. Gandolfi MG, Taddei P, Siboni F, Modena E, Ciapetti G, Prati C. Development of the foremost light-curable calcium-silicate MTA cement as root-end in oral surgery. Chemical-physical properties, bioactivity and biological behavior. Dent Mater. 2011;27(7):e134–57.

    Article  PubMed  Google Scholar 

  43. Gandolfi MG, Taddei P, Siboni F, Modena E, De Stefano ED, Prati C. Biomimetic remineralization of human dentin using promising innovative calcium-silicate hybrid “smart” materials. Dent Mater. 2011;27(11):1055–69.

    Article  PubMed  Google Scholar 

  44. Gandolfi MG, Van Landuyt K, Taddei P, Modena E, Van Meerbeek B, Prati C. Environmental scanning electron microscopy connected with energy dispersive x-ray analysis and Raman techniques to study ProRoot mineral trioxide aggregate and calcium silicate cements in wet conditions and in real time. J Endod. 2010;36(5):851–7.

    Article  PubMed  Google Scholar 

  45. Gomes-Filho JE, de Faria MD, Bernabé PF, Nery MJ, Otoboni-Filho JA, Dezan-Júnior E, de Moraes Costa MM, Cannon M. Mineral trioxide aggregate but not light-cure mineral trioxide aggregate stimulated mineralization. J Endod. 2008;34(1):62–5.

    Article  PubMed  Google Scholar 

  46. Gomes-Filho JE, de Moraes Costa MT, Cintra LT, Lodi CS, Duarte PC, Okamoto R, Bernabé PF, Nery MJ, Cannon M. Evaluation of alveolar socket response to Angelus MTA and experimental light-cure MTA. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2010;110(5):e93–7.

    Article  PubMed  Google Scholar 

  47. Han L, Okiji T, Okawa S. Morphological and chemical analysis of different precipitates on mineral trioxide aggregate immersed in different fluids. Dent Mater J. 2010;29:512–7.

    Article  PubMed  Google Scholar 

  48. Hawley M, Webb TD, Goodell GG. Effect of varying water-to-powder ratios on the setting expansion of white and gray mineral trioxide aggregate. J Endod. 2010;36(8):1377–9.

    Article  PubMed  Google Scholar 

  49. Huffman BP, Mai S, Pinna L, Weller RN, Primus CM, Gutmann JL, Pashley DH, Tay FR. Dislocation resistance of ProRoot Endo Sealer, a calcium silicate-based root canal sealer, from radicular dentine. Int Endod J. 2009;42(1):34–46.

    Article  PubMed  Google Scholar 

  50. Jafarnia B, Jiang J, He J, Wang YH, Safavi KE, Zhu Q. Evaluation of cytotoxicity of MTA employing various additives. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;107(5):739–44.

    Article  PubMed  Google Scholar 

  51. Ji DY, Wu HD, Hsieh SC, Teng NC, Chen CC, Ke ES, Lin YC, Lee SY, Yang JC. Effects of a novel hydration accelerant on the biological and mechanical properties of white mineral trioxide aggregate. J Endod. 2011;37(6):851–5.

    Article  PubMed  Google Scholar 

  52. Kai D, Li D, Zhu X, Zhang L, Fan H, Zhang X. Addition of sodium hyaluronate and the effect on performance of the injectable calcium phosphate cement. J Mater Sci Mater Med. 2009;20(8):1595–602.

    Article  PubMed  Google Scholar 

  53. Kogan P, He J, Glickman GN, Watanabe I. The effects of various additives on setting properties of MTA. J Endod. 2006;32(6):569–72.

    Article  PubMed  Google Scholar 

  54. Komabayashi T, Spångberg LS. Comparative analysis of the particle size and shape of commercially available mineral trioxide aggregates and Portland cement: a study with a flow particle image analyzer. J Endod. 2008;34(1):94–8.

    Article  PubMed  Google Scholar 

  55. Komabayashi T, Spångberg LS. Particle size and shape analysis of MTA finer fractions using Portland cement. J Endod. 2008;34(6):709–11.

    Article  PubMed  Google Scholar 

  56. Lee BN, Hwang YC, Jang JH, Chang HS, Hwang IN, Yang SY, Park YJ, Son HH, Oh WM. Improvement of the properties of mineral trioxide aggregate by mixing with hydration accelerators. J Endod. 2011;37(10):1433–6.

    Article  PubMed  Google Scholar 

  57. Lee SJ, Chung J, Na HS, Park EJ, Jeon HJ, Kim HC. Characteristics of novel root-end filling material using epoxy resin and Portland cement. Clin Oral Investig. 2013;17(3):1009–15.

    Article  PubMed  Google Scholar 

  58. Lin Q, Lan X, Li Y, Yu Y, Ni Y, Lu C, Xu Z. Anti-washout carboxymethyl chitosan modified tricalcium silicate bone cement: preparation, mechanical properties and in vitro bioactivity. J Mater Sci Mater Med. 2010;21(12):3065–76.

    Article  PubMed  Google Scholar 

  59. Massi S, Tanomaru-Filho M, Silva GF, Duarte MA, Grizzo LT, Buzalaf MA, Guerreiro-Tanomaru JM. pH, calcium ion release, and setting time of an experimental mineral trioxide aggregate-based root canal sealer. J Endod. 2011;37(6):844–6.

    Article  PubMed  Google Scholar 

  60. Matsunaga T, Tsujimoto M, Kawashima T, Tsujimoto Y, Fujiwara M, Ookubo A, Hayashi Y. Analysis of arsenic in gray and white mineral trioxide aggregates by using atomic absorption spectrometry. J Endod. 2010;36(12):1988–90.

    Article  PubMed  Google Scholar 

  61. Monteiro Bramante C, Demarchi AC, de Moraes IG, Bernadineli N, Garcia RB, Spångberg LS, Duarte MA. Presence of arsenic in different types of MTA and white and gray Portland cement. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2008;106(6):909–13.

    Article  PubMed  Google Scholar 

  62. Nekoofar MH, Adusei G, Sheykhrezae MS, Hayes SJ, Bryant ST, Dummer PM. The effect of condensation pressure on selected physical properties of mineral trioxide aggregate. Int Endod J. 2007;40(6):453–61.

    Article  PubMed  Google Scholar 

  63. Nekoofar MH, Aseeley Z, Dummer PM. The effect of various mixing techniques on the surface microhardness of mineral trioxide aggregate. Int Endod J. 2010;43(4):312–20.

    Article  PubMed  Google Scholar 

  64. Neville AM, editor. Properties of concrete. 4th ed. Upper Saddle River: Prentice Hall; 2005. p. 2–8.

    Google Scholar 

  65. Paillere AM, Ben Bassat M, Akman S. Applications of admixtures for concrete. RILEM Technical Committees. New York: E & FN Spon, an imprint of Chapman & Hall; 1992.

    Google Scholar 

  66. Park JW, Hong SH, Kim JH, Lee SJ, Shin SJ. X-ray diffraction analysis of white ProRoot MTA and Diadent BioAggregate. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2010;109(1):155–8.

    Article  PubMed  Google Scholar 

  67. Pelliccioni GA, Vellani CP, Gatto MR, Gandolfi MG, Marchetti C, Prati C. Proroot mineral trioxide aggregate cement used as a retrograde filling without addition of water: an in vitro evaluation of its microleakage. J Endod. 2007;33(9):1082–5.

    Article  PubMed  Google Scholar 

  68. Porter ML, Bertó A, Primus CM, Watanabe I. Physical and chemical properties of new-generation endodontic materials. J Endod. 2010;36(3):524–8.

    Article  PubMed  Google Scholar 

  69. Primus CM, inventor; DENTSPLY International, Inc., assignee. Dental material. United States Patent 7,892,342. 22 Feb 2011.

    Google Scholar 

  70. Profeta AC, Mannocci F, Foxton R, Watson TF, Feitosa VP, De Carlo B, Mongiorgi R, Valdré G, Sauro S. Experimental etch-and-rinse adhesives doped with bioactive calcium silicate-based micro-fillers to generate therapeutic resin-dentin interfaces. Dent Mater. 2013;29(7):729–41.

    Article  PubMed  Google Scholar 

  71. Rietveld HM. A profile refinement method for nuclear and magnetic structure. J Appl Cryst. 1967;2:65–71.

    Article  Google Scholar 

  72. Schembri M, Peplow G, Camilleri J. Analyses of heavy metals in mineral trioxide aggregate and Portland cement. J Endod. 2010;36(7):1210–5.

    Article  PubMed  Google Scholar 

  73. Shahi S, Rahimi S, Yavari HR, Samiei M, Janani M, Bahari M, Abdolrahimi M, Pakdel F, Aghbali A. Effects of various mixing techniques on push-out bond strengths of white mineral trioxide aggregate. J Endod. 2012;38(4):501–4.

    Article  PubMed  Google Scholar 

  74. Shahravan A, Jalali SP, Torabi M, Haghdoost AA, Gorjestani H. A histological study of pulp reaction to various water/powder ratios of white mineral trioxide aggregate as pulp-capping material in human teeth: a double-blinded, randomized controlled trial. Int Endod J. 2011;44(11):1029–33.

    Article  PubMed  Google Scholar 

  75. Specification CRD-C 61-89ACRD-C 661-06. Specification for antiwashout admixtures for concrete, section 16, Test method for determining the resistance of freshly mixed concrete to washing out in water. Washington, DC: Chemical Research and Development Center, U.S. Army; 2006.

    Google Scholar 

  76. Taddei P, Tinti A, Gandolfi MG, Possi PML, Prati C. Ageing of calcium silicate cements for endodontic use in simulated body fluids: a micro-Raman study. J Raman Spectrosc. 2009;40:1858–66.

    Article  Google Scholar 

  77. Tay FR, Pashley DH, Rueggeberg FA, Loushine RJ, Weller RN. Calcium phosphate phase transformation produced by the interaction of the Portland cement component of white mineral trioxide aggregate with a phosphate-containing fluid. J Endod. 2007;33(11):1347–51.

    Article  PubMed  Google Scholar 

  78. Torabinejad M, Hong CU, McDonald F, Pitt Ford TR. Physical and chemical properties of a new root-end filling material. J Endod. 1995;21(7):349–53.

    Article  PubMed  Google Scholar 

  79. Torabinejad M, White DJ, inventors; Loma Linda University, assignee. Tooth filling material and method of use. United States Patent 5,415,547. 16 May 1995.

    Google Scholar 

  80. Torabinejad M, White DJ, inventors; Loma Linda University, assignee. Tooth filling material and method of use. United States Patent 5,769,638. 23 June 1998.

    Google Scholar 

  81. Vanderweele RA, Schwartz SA, Beeson TJ. Effect of blood contamination on retention characteristics of MTA when mixed with different liquids. J Endod. 2006;32(5):421–4.

    Article  PubMed  Google Scholar 

  82. Wang X, Chen L, Xiang H, Ye J. Influence of anti-washout agents on the rheological properties and injectability of a calcium phosphate cement. J Biomed Mater Res B Appl Biomater. 2007;81(2):410–8.

    Article  PubMed  Google Scholar 

  83. Watts JD, Holt DM, Beeson TJ, Kirkpatrick TC, Rutledge RE. Effects of pH and mixing agents on the temporal setting of tooth-colored and gray mineral trioxide aggregate. J Endod. 2007;33(8):970–3.

    Article  PubMed  Google Scholar 

  84. Weller RN, Tay KC, Garrett LV, Mai S, Primus CM, Gutmann JL, Pashley DH, Tay FR. Microscopic appearance and apical seal of root canals filled with gutta-percha and ProRoot Endo Sealer after immersion in a phosphate-containing fluid. Int Endod J. 2008;41(11):977–86.

    Article  PubMed  Google Scholar 

  85. Wiltbank KB, Schwartz SA, Schindler WG. Effect of selected accelerants on the physical properties of mineral trioxide aggregate and Portland cement. J Endod. 2007;33(10):1235–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josette Camilleri BChD, MPhil, PhD, FIMMM, FADM .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Camilleri, J. (2014). Composition and Setting Reaction. In: Camilleri, J. (eds) Mineral Trioxide Aggregate in Dentistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55157-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55157-4_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-55156-7

  • Online ISBN: 978-3-642-55157-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics