Skip to main content

On Segregative Behaviors Using Flocking and Velocity Obstacles

  • Conference paper
Distributed Autonomous Robotic Systems

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 104))

Abstract

This paper presents a novel approach to swarm navigation that combines hierarchical abstractions, flocking behaviors, and an efficient collision avoidance mechanism. Our main objective is to keep large groups of robots segregated while safely navigating in a shared environment. For this, we propose the Virtual Group Velocity Obstacle, which is an extension of the Velocity Obstacle concept for groups of robots. By augmenting velocity obstacles with flocking behaviors and hierarchical abstractions, we are able to navigate robotic swarms in a cohesive and smooth fashion. A series of simulations and real experimentswere performed and the results show the effectiveness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abe, Y., Yoshiki, M.: Collision avoidance method for multiple autonomous mobile agents by implicit cooperation. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 3, pp. 1207–1212 (2001)

    Google Scholar 

  2. Alonso-Mora, J., Breitenmoser, A., Rufli, M., Beardsley, P., Siegwart, R.: Optimal reciprocal collision avoidance for multiple non-holonomic robots. In: Martinoli, A., Mondada, F., Correll, N., Mermoud, G., Egerstedt, M., Hsieh, M.A., Parker, L.E., Støy, K. (eds.) Distributed Autonomous Robotic Systems. STAR, vol. 83, pp. 203–216. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  3. Balch, T., Hybinette, M.: Social potentials for scalable multirobot formations. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 73–80 (2000)

    Google Scholar 

  4. Belta, C., Kumar, V.: Abstraction and control for groups of robots. IEEE Transactions on Robotics 20(5), 865–875 (2004)

    Article  Google Scholar 

  5. van den Berg, J., Guy, S.J., Lin, M., Manocha, D.: Reciprocal n-body collision avoidance. In: Pradalier, C., Siegwart, R., Hirzinger, G. (eds.) Robotics Research. STAR, vol. 70, pp. 3–19. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  6. van den Berg, J., Lin, M., Manocha, D.: Reciprocal velocity obstacles for real-time multi-agent navigation. In: IEEE International Conference on Robotics and Automation, pp. 1928–1935 (2008)

    Google Scholar 

  7. Chaimowicz, L., Kumar, V.: Aerial shepherds: Coordination among uavs and swarms of robots. In: 7th International Symposium on Distributed Autonomous Robotic Systems (2004)

    Google Scholar 

  8. Chaimowicz, L., Michael, N., Kumar, V.: Controlling swarms of robots using interpolated implicit functions. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 2498–2503 (2005)

    Google Scholar 

  9. Edelsbrunner, H., Kirkpatrick, D., Seidel, R.: On the shape of a set of points in the plane. IEEE Transactions on Information Theory 29(4), 551–559 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  10. Fiorini, P., Shillert, Z.: Motion planning in dynamic environments using velocity obstacles. International Journal of Robotics Research 17, 760–772 (1998)

    Article  Google Scholar 

  11. Fulgenzi, C., Spalanzani, A., Laugier, C.: Dynamic obstacle avoidance in uncertain environment combining pvos and occupancy grid. In: IEEE International Conference on Robotics and Automation, pp. 1610–1616 (2007)

    Google Scholar 

  12. Santos, G., Chaimowicz, V., Hierarchical, L.: congestion control for robotic swarms. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4372–4377 (2011)

    Google Scholar 

  13. Gerkey, B.P., Vaughan, R.T., Howard, A.: The player/stage project: Tools for multi-robot and distributed sensor systems. In: Proceedings of the 11th International Conference on Advanced Robotics, pp. 317–323 (2003)

    Google Scholar 

  14. Guy, S.J., Chhugani, J., Kim, C., Satish, N., Lin, M., Manocha, D., Dubey, P.: Clearpath: highly parallel collision avoidance for multi-agent simulation. In: Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 177–187. ACM, New York (2009)

    Google Scholar 

  15. Howard, A., Mataric, M., Sukhatme, G.: Mobile sensor network deployment using potential fields: A distributd, scalable solution to the area coverage problem. In: Proceedings of the 6th International Symposium on Distributed Autonomous Robotic Systems (2002)

    Google Scholar 

  16. Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. In: Proceedings of the IEEE International Conference on Robotics and Automation, vol. 2, pp. 500–505 (1985), doi:10.1109/ROBOT.1985.1087247

    Google Scholar 

  17. Kumar, M., Garg, D., Kumar, V.: Segregation of heterogeneous units in a swarm of robotic agents. IEEE Transactions on Automatic Control 55(3), 743–748 (2010)

    Article  MathSciNet  Google Scholar 

  18. Lien, J.M., Bayazit, O., Sowell, R., Rodriguez, S., Amato, N.: Shepherding behaviors. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 4159–4164 (2004)

    Google Scholar 

  19. Lozano-Perez, T.: Spatial planning: A configuration space approach. IEEE Transactions on Computers C-32(2), 108–120 (1983)

    MathSciNet  Google Scholar 

  20. Luca, A.D., Oriolo, G., Vendittelli, M.: Stabilization of the unicycle via dynamic feedback linearization. In: 6th IFAC Symposium on Robot Control, pp. 397–402 (2000)

    Google Scholar 

  21. Michael, N., Belta, C., Kumar, V.: Controlling three dimensional swarms of robots. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 964–969 (2006)

    Google Scholar 

  22. Reif, J.H., Wang, H.: Social potential fields: A distributed behavioral control for autonomous robots. Robotics and Autonomous Systems 27(3), 171–194 (1999)

    Article  Google Scholar 

  23. Reynolds, C.W.: Flocks, herds, and schools: A distributed behavioral model. In: Computer Graphics, pp. 25–34 (1987)

    Google Scholar 

  24. Siegwart, R., Nourbakhsh, I.R.: Introduction to Autonomous Mobile Robots. Bradford Company, Scituate (2004)

    Google Scholar 

  25. Snape, J., van den Berg, J., Guy, S., Manocha, D.: The hybrid reciprocal velocity obstacle. IEEE Transactions on Robotics 27(4), 696–706 (2011)

    Article  Google Scholar 

  26. Tan, K.H., Lewis, M.: Virtual structures for high-precision cooperative mobile robotic control. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 1, pp. 132–139 (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinicius Graciano Santos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Santos, V.G., Campos, M.F.M., Chaimowicz, L. (2014). On Segregative Behaviors Using Flocking and Velocity Obstacles. In: Ani Hsieh, M., Chirikjian, G. (eds) Distributed Autonomous Robotic Systems. Springer Tracts in Advanced Robotics, vol 104. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55146-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55146-8_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-55145-1

  • Online ISBN: 978-3-642-55146-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics