Skip to main content

Error-Tolerant Cyclic Sequences for Vision-Based Absolute Encoders

  • Conference paper
Distributed Autonomous Robotic Systems

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 104))

  • 1881 Accesses

Abstract

A method for obtaining error-tolerant cyclic sequences similar to de Bruijn sequences is presented. These sequences have a number of potential applications, including use as absolute rotary encoders. This investigation is motivated by the desire to use a vision-based system to obtain the angular position of the wheels of mobile robots as they rotate about their axes. One benefit of this approach is that the actual wheel orientation is observed (as opposed to non-collocated measurements of wheel angles via encoders on the motor shaft). As a result, ambiguities from backlash are eliminated. Another benefit of this system is the ability to apply it quickly to existing systems. Several methods are developed for increasing the robustness of these encoders. An imaging simulator is used to compare the accuracy of a variety of encoding schemes subjected to several levels of image noise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. De Luca, A., Oriolo, G., Samson, C.: Feedback control of a nonholonomic car-like robot. In: Laumond, J. (ed.) Robot Motion Planning and Control. LNCIS, vol. 229, pp. 171–253. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  2. Everett, H.R.: Sensors for Mobile Robots: Theory and Application. A K Peters (1995)

    Google Scholar 

  3. Fierro, R., Lewis, F.L.: Robust practical point stabilization of a nonholonomic mobile robot using neural networks. Journal of Intelligent and Robotic Systems 20, 295–317 (1997)

    Article  Google Scholar 

  4. Golomb, S.W.: Shift Register Sequences. Holden-Day (1967)

    Google Scholar 

  5. Hagita, M., Matsumoto, M., Natsu, F., Ohtsuka, Y.: Error correcting sequence and projective de bruijn graph. Graphs and Combinatroics 24(3), 185–194 (2008)

    MATH  MathSciNet  Google Scholar 

  6. Heiss, M.: Error-detecting unit-distance code. IEEE Trans. Instrum. Meas. 39(5), 730–734 (1990), doi:10.1109/19.58616

    Article  Google Scholar 

  7. Johnson, D.B.: Finding all the elementary circuits of a directed graph. SIAM J. on Computing 4(1), 77–84 (1975)

    Article  MATH  Google Scholar 

  8. Kutzer, M.D.M., Moses, M.S., Brown, C.Y., Scheidt, D.H., Chirikjian, G.S., Armand, M.: Design of a new independently-mobile reconfigurable modular robot. In: Proc. IEEE International Conf. on Robotics and Automation (2010)

    Google Scholar 

  9. Mateti, P., Deo, N.: On algorithms for enumerating all circuits of a graph. SIAM J. on Computing 5(1), 90–99 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  10. Mayer, J.R.R.: The Measurement, Instrumentation, and Sensors Handbook, ch. 6.8. CRC Press (1999)

    Google Scholar 

  11. Stein, D., Scheinerman, E.R., Chirikjian, G.S.: Mathematical models of binary spherical-motion encoders. IEEE/ASME Trans. Mechatronics 8(2), 234–244 (2003)

    Article  Google Scholar 

  12. Tomilnson, G.H.: Absolute type shaft encoder using shift register sequences. Electronics Letters 23(8), 398–400 (1987)

    Article  Google Scholar 

  13. Tomlinson, G.H., Ball, E.: Elimination of errors in absolute position encoders using m-sequences. Electronics Letters 23(25), 1372–1374 (1987)

    Article  Google Scholar 

  14. Wolfe, K.C., Kutzer, M.D., Armand, M., Chirikjian, G.S.: Trajectory generation and steering optimization for self-assembly of a modular robotic system. In: Proc. IEEE International Conf. on Robotics and Automation (2010)

    Google Scholar 

  15. Wolfe, K.C., Moses, M.S., Kutzer, M.D., Chirikjian, G.S.: M3express: A low-cost independently-mobile reconfigurable modular robot. In: Proc. IEEE International Conf. on Robotics and Automation (2012)

    Google Scholar 

  16. Yamaguchi, K., Imai, H.: Periodic sequences for absolute type shaft encoders. In: Sakata, S. (ed.) AAECC 1990. LNCS, vol. 508, pp. 36–45. Springer, Heidelberg (1991)

    Chapter  Google Scholar 

  17. Zhang, Q., Shippen, J., Jones, B.: Robust backstepping and neural network control of a low-quality nonholonomic mobile robot. International Journal of Machine Tools and Manufacture 39, 1117–1134 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin C. Wolfe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wolfe, K.C., Chirikjian, G.S. (2014). Error-Tolerant Cyclic Sequences for Vision-Based Absolute Encoders. In: Ani Hsieh, M., Chirikjian, G. (eds) Distributed Autonomous Robotic Systems. Springer Tracts in Advanced Robotics, vol 104. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55146-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55146-8_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-55145-1

  • Online ISBN: 978-3-642-55146-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics