Advertisement

Body Ownership of Virtual Avatars: An Affordance Approach of Telepresence

  • Tiago Coelho
  • Rita de Oliveira
  • Tiago Cardoso
  • Yves Rybarczyk
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 425)

Abstract

Virtual environments are an increasing trend in today’s society. In this scope, the avatar is the representation of the user in the virtual world. However, that relationship lacks empirical studies regarding the nature of the interaction between avatars and human beings. For that purpose it was studied how the avatar’s modeled morphology and dynamics affect its control by the user. An experiment was conducted to measure telepresence and ownership on participants who used a Kinect Natural User Interface (NUI). The body ownership of different avatars was assessed through a behavioral parameter, based on the concept of affordances, and a questionnaire of presence. The results show that the feelings of telepresence and ownership seem to be greater when the kinematics and the avatar’s proportions are closer to those of the user.

Keywords

Avatar telepresence ownership affordances natural user interface virtual environment 

References

  1. 1.
    Minsky, M.: Telepresence. Omni 2, 45–51 (1980)Google Scholar
  2. 2.
    Slater, M., Usoh, M., Steed, A.: Depth of presence in virtual environments. Presence 3, 130–144 (1994)Google Scholar
  3. 3.
    Rybarczyk, Y., Mestre, D.: Effect of visuo-manual configuration on a telerobot integration into the body schema. Le Travail Humain 76, 181–204 (2013)CrossRefGoogle Scholar
  4. 4.
    Rybarczyk, Y., Hoppenot, P., Colle, E., Mestre, D.: Sensori-motor appropriation of an artefact: A neuroscientific approach. In: Inaki, M. (ed.) Human Machine Interaction - Getting Closer, pp. 187–212. InTech, Rijeka (2012)Google Scholar
  5. 5.
    Sumioka, H., Nishio, S., Ishiguro, H.: Teleoperated android for mediated communication: Body ownership, personality distortion, and minimal human design. Social Robotic Telepresence 32 (2012)Google Scholar
  6. 6.
    Botvinick, M., Cohen, J.: Rubber hands ‘feel’ touch that eyes see. Nature 391, 756–756 (1998)CrossRefGoogle Scholar
  7. 7.
    Yuan, Y., Steed, A.: Is the rubber hand illusion induced by immersive virtual reality? In: Virtual Reality Conference, pp. 95–102. IEEE Press (2010)Google Scholar
  8. 8.
    Tsakiris, M., Prabhu, G., Haggard, P.: Having a body versus moving your body: How agency structures body-ownership. Consciousness and Cognition 15, 423–432 (2006)CrossRefGoogle Scholar
  9. 9.
    Ehrsson, H.H., Spence, C., Passingham, R.E.: That’s my hand! Activity in premotor cortex reflects feeling of ownership of a limb. Science 305, 875–877 (2004)CrossRefGoogle Scholar
  10. 10.
    Petkova, V.I., Ehrsson, H.H.: If I were you: Perceptual illusion of body swapping. PloS One 3, e3832 (2008)Google Scholar
  11. 11.
    Maravita, A., Iriki, A.: Tools for the body (schema). Trends in Cognitive Sciences 8, 79–86 (2004)CrossRefGoogle Scholar
  12. 12.
    Iriki, A., Tanaka, M., Iwamura, Y.: Coding of modified body schema during tool use by macaque postcentral neurons. Neuroreport 7, 2325–2330 (1996)CrossRefGoogle Scholar
  13. 13.
    Maselli, A., Slater, M.: The building blocks of the full body ownership illusion. Frontiers in Human Neuroscience 7, 83 (2013)CrossRefGoogle Scholar
  14. 14.
    Armel, K.C., Ramachandran, V.S.: Projecting sensations to external objects: Evidence from skin conductance response. Proceedings of the Royal Society of London. Series B: Biological Sciences 270, 1499–1506 (2003)CrossRefGoogle Scholar
  15. 15.
    Slater, M., Perez-Marcos, D., Ehrsson, H.H., Sanchez-Vives, M.V.: Inducing illusory ownership of a virtual body. Frontiers in Neuroscience 3, 214 (2009)CrossRefGoogle Scholar
  16. 16.
    González-Franco, M., Peck, T.C., Slater, M.: Virtual Embodiment Elicits a Mu Rhythm ERD When the Virtual Hand is Threatened. In: 8th International Brain Research Organisation, Congress of Neuroscience (2011)Google Scholar
  17. 17.
    Gibson, J.J.: The ecological approach to visual perception. Houghton Mifflin, Boston (1979)Google Scholar
  18. 18.
    Warren, W.H., Whang, S.: Visual guidance of walking through apertures: Body-scaled information for affordances. Journal of Experimental Psychology: Human Perception and Performance 13, 371–383 (1987)Google Scholar
  19. 19.
    De Oliveira, R.F., Damisch, L., Hossner, E.J., Oudejans, R.D., Raab, M., Volz, K.G., Williams, A.M.: The bidirectional links between decision making, perception, and action. Progress in Brain Research 174, 85–93 (2009)CrossRefGoogle Scholar
  20. 20.
    Mark, L.S.: Eyeheight-scaled information about affordances: A study of sitting and stair climbing. Journal of Experimental Psychology: Human Perception and Performance 13, 361–370 (1987)Google Scholar
  21. 21.
    Esteves, P.T., De Oliveira, R.F., Araújo, D.: Posture-related affordances guide attack in basketball. Psychology of Sport and Exercise 12, 639–644 (2011)CrossRefGoogle Scholar
  22. 22.
    Warren, W.H.: Perceiving affordances: Visual guidance of stair climbing. Journal of Experimental Psychology: Human Perception and Performance 10, 683–703 (1984)Google Scholar
  23. 23.
    Meadows, M.S.: I, avatar. New Riders Press, Berkley (2008)Google Scholar
  24. 24.
    Castronova, E.: Theory of the Avatar. Cesifo (2003)Google Scholar
  25. 25.
    Tsakiris, M., Haggard, P.: The rubber hand illusion revisited: Visuotactile integration and self-attribution. Journal of Experimental Psychology: Human Perception and Performance 31, 80–91 (2005)Google Scholar
  26. 26.
    Kalckert, A., Ehrsson, H.H.: Moving a rubber hand that feels like your own: A dissociation of ownership and agency. Frontiers in Human Neuroscience 6, 40 (2012)CrossRefGoogle Scholar
  27. 27.
    Witmer, B.J., Jerome, C.J., Singer, M.J.: The factor structure of the Presence questionnaire. Presence 14, 298–312 (2005)CrossRefGoogle Scholar
  28. 28.
    Peters, R.A., Campbell, C.L., Bluethmann, W.J., Huber, E.: Robonaut task learning through teleoperation. In: IEEE International Conference on Robotics and Automation, pp. 2806–2811. IEEE Press (2003)Google Scholar
  29. 29.
    Rybarczyk, Y., Mestre, D.: Effect of temporal organization of the visuo-locomotor coupling on the predictive steering. Frontiers in Psychology 3, 239 (2012)CrossRefGoogle Scholar
  30. 30.
    Moore, K.S., Gomer, J.A., Pagano, C.C., Moore, D.D.: Perception of robot passability with direct line of sight and teleoperation. Human Factors: The Journal of the Human Factors and Ergonomics Society 51, 557–570 (2009)CrossRefGoogle Scholar
  31. 31.
    De Oliveira, R.F., Wann, J.P.: Driving skills of young adults with developmental coordination disorder: Regulating speed and coping with distraction. Research in Developmental Disabilities 32, 1301–1308 (2011)CrossRefGoogle Scholar
  32. 32.
    Wise, S.P., Murray, E.A.: Arbitrary associations between antecedents and actions. Trends in Neurosciences 23, 271–276 (2000)CrossRefGoogle Scholar
  33. 33.
    Bruder, G., Steinicke, F., Hinrichs, K.H.: Arch-explore: A natural user interface for immersive architectural walkthroughs. In: IEEE Symposium on 3D User Interfaces, pp. 75–82. IEEE Press (2009)Google Scholar
  34. 34.
    Francese, R., Passero, I., Tortora, G.: Wiimote and Kinect: Gestural user interfaces add a natural third dimension to HCI. In: Proceedings of the International Working Conference on Advanced Visual Interfaces, pp. 116–123. ACM Press (2012)Google Scholar
  35. 35.
    Fitts, P.M.: The information capacity of the human motor system in controlling the amplitude of movement. Journal of Experimental Psychology 47, 381–391 (1954)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2014

Authors and Affiliations

  • Tiago Coelho
    • 1
  • Rita de Oliveira
    • 2
  • Tiago Cardoso
    • 1
  • Yves Rybarczyk
    • 1
  1. 1.Electrotechnical Engineering DepartmentNew University of LisbonPortugal
  2. 2.Department of Applied SciencesLondon South Bank UniversityUK

Personalised recommendations