MicroStressBots: Species Differentiation in Surface Micromachined Microrobots

  • Christopher G. Levey
  • Igor Paprotny
  • Bruce R. Donald
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8336)


In this paper we review our ongoing research on untethered stress-engineered microrobots (MicroStressBots), focusing on the challenges and opportunities of operating mobile robots on the micrometer size scale. The MicroStressBots are fabricated with planar dimensions of approximately 260 μm × 60 μm and a total mass less than 50 ng from 1.5-3.5 μm thick polycrystalline silicon using a surface micromachining processes. A single global power delivery and control signal is broadcast to all our robots, but decoded differently by each species using onboard electromechanical memory and logic. We review our design objectives in creating robots on the microscale, and describe the constraints imposed by fabrication, assembly, and operation of such small robotic systems. Our robots have been used to motivate and demonstrate multiple robot control algorithms constrained by a single global signal with a limited number of distinct voltages.


Power Delivery Turning Rate Dielectric Breakdown Strength Transfer Frame Locomotion Mechanism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Donald, B.R., Levey, C.G., McGray, C., Rus, D., Sinclair, M.: Power delivery and locomotion of untethered micro-actuators. Journal of Microelectromechanical Systems 10(6), 947–959 (2003)CrossRefGoogle Scholar
  2. 2.
    Donald, B.R., Levey, C.G., McGray, C., Paprotny, I., Rus, D.: An untethered, electrostatic, globally-controllable MEMS micro-robot. Journal of Microelectromechanical Systems 15(1), 1–15 (2006)CrossRefGoogle Scholar
  3. 3.
    Donald, B.R., Levey, C.G., Paprotny, I.: Planar microassembly by parallel actuation of MEMS microrobots. Journal of Microelectromechanical Systems 17(4), 789–808 (2008)CrossRefGoogle Scholar
  4. 4.
    Paprotny, I., Levey, C., Wright, P., Donald, B.: Turning-rate selective control: A new method for independent control of stress-engineered MEMS microrobots. In: Robotics: Science and Systems VIII (2012)Google Scholar
  5. 5.
    Donald, B.R., Levey, C., Paprotny, I., Rus, D.: Planning and control for microassembly using stress-engineered. International Journal of Robotics Research 32(2), 218–246 (2013)CrossRefGoogle Scholar
  6. 6.
    Akiyama, T., Shono, K.: Controlled stepwise motion in polysilicon microstructures. Journal of Microelectromechanical Systems 2(3), 106–110 (1993)CrossRefGoogle Scholar
  7. 7.
    Tsai, C.L., Henning, A.K.: Out-of-plane microstructures using stress engineering of thin films. In: Proceedings of the Microlithography and Metrology in Micromachining, vol. 2639, pp. 124–132 (1995)Google Scholar
  8. 8.
    Donald, B.R.: Building very small mobile micro robots. Inaugural Lecture, Nanotechnology Public Lecture Series. MIT (Research Laboratory for Electronics, Electrical Engineering and Computer Science, and Microsystems Technology, Laboratories), Cambridge (2007),
  9. 9.
    Becker, A.T.: Ensemble Control of Robotic Systems. PhD thesis, University of Illinois at Urbana-Champaign (2012)Google Scholar
  10. 10.
    Diller, E., Floyd, S., Pawashe, C., Sitti, M.: Control of multiple heterogeneous magnetic micro-robots in two dimensions. IEEE Transactions on Robotics 28(1), 172–182 (2012)CrossRefGoogle Scholar
  11. 11.
    Mason, M.T.: Mechanics of Robotic Manipulation. MIT Press (2001)Google Scholar
  12. 12.
    McGray, C.D., Stavis, S.M., Giltinan, J., Eastman, E., Firebaugh, S., Piepmeier, J., Geist, J., Gaitan, M.: Mems kinematics by super-resolution fluorescence microscopy. Journal of Microelectromechanical Systems 22(1), 115–123 (2013)CrossRefGoogle Scholar
  13. 13.
    Trimmer, W.S.N.: Microrobots and micromechanical systems. Sensors and Actuators 19(3), 267–287 (1998)CrossRefGoogle Scholar
  14. 14.
    Gosh, A.: Scaling Laws. In: Chakraborty, S. (ed.) Mechanics Over Micro and Nano Scales, ch. 2. Springer, New York (2011)Google Scholar
  15. 15.
    Bhushan, B., Dandavate, C.: Thin-film friction and adhesion studies using atomic force microscopy. Journal of Applied Physics 87(3), 1201–1210 (2000)CrossRefGoogle Scholar
  16. 16.
    Williams, J.A., Lee, H.: Tribology and MEMS. Journal of Physics D: Applied Physics 39, R201–R214 (2006)Google Scholar
  17. 17.
    Bora, C.K., Flater, E.E., Street, M.D., Redmond, J.M., Starr, M.J., Carpick, R.W., Plesha, M.E.: Multiscale roughness and modeling of MEMS interfaces. Tribology Letters 19(1), 37–48 (2005)CrossRefGoogle Scholar
  18. 18.
    Yesin, K.B., Vollmers, K., Nelson, B.J.: Modeling and control of untethered boimicrorobots in fluid environment using electromagnetic fields. The International Journal of Robotics Research 25(5-6), 527–536 (2006)CrossRefGoogle Scholar
  19. 19.
    Pawashe, C., Floyd, S., Sitti, M.: Modeling and experimental characterization of an untethered magnetic micro-robot. International Journal of Robotics Research 28(9), 1077–1094 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Christopher G. Levey
    • 1
  • Igor Paprotny
    • 2
  • Bruce R. Donald
    • 3
    • 4
    • 5
  1. 1.Thayer School of EngineeringDartmouth CollegeHanoverUSA
  2. 2.Dept. of Electrical and Computer EngineeringUniversity of IllinoisChicagoUSA
  3. 3.Dept. of Computer ScienceDuke UniversityDurhamUSA
  4. 4.Dept. of BiochemistryDuke University Medical CenterDurhamUSA
  5. 5.Duke Inst. for Brain SciencesDuke University Medical CenterDurhamUSA

Personalised recommendations