Advertisement

Progress Toward Mobility in Microfabricated Millirobots

  • Sarah Bergbreiter
  • Aaron P. Gerratt
  • Dana Vogtmann
Conference paper
  • 2.3k Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8336)

Abstract

Research on mobile millirobots has been ongoing for the last 20 years, but the few robots that have walked have done so at slow speeds on smooth silicon wafers. However, ants can move at speeds approaching 40 body lengths/second on surfaces from picnic tables to front lawns. What challenges do we still need to tackle for millirobots to achieve this incredible mobility? This chapter presents some of the mechanisms that have been designed and fabricated to enable robot mobility at the insect size scale. These mechanisms utilize new microfabrication processes to incorporate materials with widely varying moduli and functionality for more complexity in smaller packages. Results include a 4 mm jumping mechanism that can be launched over 30 cm straight up, an actuated jumping mechanism used as a catapult, and preliminary leg designs for a walking/running millirobot.

Keywords

Jump Height Device Layer Reset Phase Thermal Actuator Hexapod Robot 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Full, R.J., Tu, M.S.: Mechanics of a rapid running insect: two-, four- and six-legged locomotion. The Journal of Experimental Biology 156, 215–231 (1991)Google Scholar
  2. 2.
    Seidl, T., Wehner, R.: Walking on inclines: how do desert ants monitor slope and step length. Frontiers in Zoology 5(1), 8 (2008)CrossRefGoogle Scholar
  3. 3.
    Burrows, M.: Froghopper insects leap to new heights. Nature 424, 509 (2003)CrossRefGoogle Scholar
  4. 4.
    Dudek, D.M.: Passive mechanical properties of the exoskeleton simplify the control of rapid running in the cockroach, Blaberus discoidalis. PhD dissertation, University of California, Berkeley (2006)Google Scholar
  5. 5.
    Kubow, T., Full, R.: The role of the mechanical system in control: A hypothesis of self-stabilization in hexapedal runners. Philosophical Transactions of the Royal Society London B 354, 849–862 (1999)CrossRefGoogle Scholar
  6. 6.
    Spagna, J.C., Goldman, D.I., Lin, P.C., Koditschek, D.E., Full, R.J.: Distributed mechanical feedback in arthropods and robots simplifies control of rapid running on challenging terrain. Bioinspiration & Biomimetics 2, 9–18 (2007)CrossRefGoogle Scholar
  7. 7.
    Noh, M., Kim, S.W., An, S., Koh, J.S., Cho, K.J.: Flea-inspired catapult mechanism for miniature jumping robots. IEEE Transactions on Robotics 28(5), 1007–1018 (2012)CrossRefGoogle Scholar
  8. 8.
    Brown, I., Loeb, G.: A reductionist approach to creating and using neuromusculoskeletal models. In: Biomechanics and Neuro-Control of Posture and Movement, pp. 148–163. Springer, New York (2000)CrossRefGoogle Scholar
  9. 9.
    Saranli, U., Buehler, M., Koditschek, D.E.: Design, modeling and preliminary control of a compliant hexapod robot. In: IEEE International Conference on Robotics and Automation, San Francisco, CA (2000)Google Scholar
  10. 10.
    Saranli, U., Buehler, M., Koditschek, D.E.: RHex: a simple and highly mobile hexapod robot. International Journal of Robotics Research 20(7), 616–631 (2001)CrossRefGoogle Scholar
  11. 11.
    Cham, J.G., Bailey, S.A., Cutkosky, M.R.: Robust dynamic locomotion through feedforward-preflex interaction. In: ASME International Mechanical Engineering Congress and Expo (November 2000)Google Scholar
  12. 12.
    Yeh, R., Kruglick, E.J.J., Pister, K.S.J.: Surface-micromachined components for articulated microrobots. Journal of Microelectromechanical Systems 5(1), 10–17 (1996)CrossRefGoogle Scholar
  13. 13.
    Kladitis, P.E., Bright, V.M.: Prototype microrobots for micro-positioning and micro-unmanned vehicles. Sensors and Actuators A: Physical 80(2), 132–137 (2000)CrossRefGoogle Scholar
  14. 14.
    Hollar, S., Flynn, A.M., Bellew, C., Pister, K.S.J.: Solar powered 10 mg silicon robot. In: IEEE Micro Electro Mechanical Systems, pp. 706–711 (2003)Google Scholar
  15. 15.
    Hollar, S., Flynn, A.M., Bergbreiter, S., Pister, K.S.J.: Robot leg motion in a Planarized-SOI 2 poly process, Hilton Head, SC (June 2002)Google Scholar
  16. 16.
    Petersen, K.E.: Silicon as a mechanical material. Proceedings of the IEEE 70(5), 420–457 (1982)CrossRefGoogle Scholar
  17. 17.
    Ebefors, T., Mattsson, J.U., Kalvesten, E., Stemme, G.: A walking silicon microrobot. In: International Conference on Solid-State Sensors, Actuators, and Microsystes (Transducers), Sendai, Japan, pp. 1202–1205 (June 1999)Google Scholar
  18. 18.
    Ebefors, T., Ulfstedt-Mattsson, J., Kalvesten, E., Stemme, G.: 3D micromachined devices based on polyimide joint technology. In: Conference on Devices and Process Technologies for MEMS and Microelectronics, SPIE, Gold Coast, Australia, vol. 3892, pp. 118–132 (October 1999)Google Scholar
  19. 19.
    Erdem, E.Y., Chen, Y.M., Mohebbi, M., Suh, J.W., Kovacs, G.T.A., Darling, R.B., Bohringer, K.F.: Thermally actuated omnidirectional walking microrobot. Journal of Microelectromechanical Systems 19(3), 433–442 (2010)CrossRefGoogle Scholar
  20. 20.
    Wood, R.J.: The first takeoff of a biologically inspired at-scale robotic insect. IEEE Transactions on Robotics 24(2), 341–347 (2008)CrossRefGoogle Scholar
  21. 21.
    Schneider, F., Fellner, T., Wilde, J., Wallrabe, U.: Mechanical properties of silicones for MEMS. Journal of Micromechanics and Microengineering 18(6), 065008 (2008)Google Scholar
  22. 22.
    Xia, Y., Whitesides, G.M.: Soft lithography. Annual Review of Materials Science 28(1), 153–184 (1998)CrossRefGoogle Scholar
  23. 23.
    Suzuki, Y., Tai, Y.C.: Micromachined high-aspect-ratio parylene spring and its application to low-frequency accelerometers. Journal of Microelectromechanical Systems 15(5), 1364–1370 (2006)CrossRefGoogle Scholar
  24. 24.
    Wood, R.J., Avadhanula, S., Sahai, R., Steltz, E., Fearing, R.S.: Microrobot design using fiber reinforced composites. Journal of Mechanical Design 130(5), 052304 (2008)Google Scholar
  25. 25.
    Gerratt, A.P., Bergbreiter, S.: Incorporating compliant elastomers for jumping locomotion in microrobots. Smart Materials and Structures 22(1), 014010 (2013)Google Scholar
  26. 26.
    Lee, J.N., Park, C., Whitesides, G.M.: Solvent compatibility of poly(dimethylsiloxane)-sased microfluidic devices. Analytical Chemistry 75(23), 6544–6554 (2003)CrossRefGoogle Scholar
  27. 27.
    Gerratt, A.P., Penskiy, I., Bergbreiter, S.: In situ characterization of PDMS in SOI-MEMS. Journal of Micromechanics and Microengineering 23(4), 045003 (2013)Google Scholar
  28. 28.
    Bergbreiter, S.: Effective and efficient locomotion for millimeter-sized microrobots. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, France, pp. 4030–4035 (September 2008)Google Scholar
  29. 29.
    Churaman, W.A., Gerratt, A.P., Bergbreiter, S.: First leaps toward jumping microrobots. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, CA, USA, pp. 1680–1686 (September 2011)Google Scholar
  30. 30.
    Burdick, J., Fiorini, P.: Minimalist jumping robots for celestial exploration. The International Journal of Robotics Research 22(78), 653–674 (2003)CrossRefGoogle Scholar
  31. 31.
    Braunig, P., Burrows, M.: Neurons controlling jumping in froghopper insects. The Journal of Comparative Neurology 507(1), 1065–1075 (2008)CrossRefGoogle Scholar
  32. 32.
    Burrows, M.: Morphology and action of the hind leg joints controlling jumping in froghopper insect. Journal of Experimental Biology 209, 4622–4637 (2006)CrossRefGoogle Scholar
  33. 33.
    Maloney, J.M., Schreiber, D.S., DeVoe, D.L.: Large-force electrothermal linear micromotors. Journal of Micromechanics and Microengineering 14, 226–234 (2004)CrossRefGoogle Scholar
  34. 34.
    Howell, L.L.: Compliant Mechanisms. John Wiley & Sons, Inc., New York (2001)Google Scholar
  35. 35.
    Vogtmann, D., Gupta, S.K., Bergbreiter, S.: Characterization and modeling of elastomeric joints in miniature compliant mechanisms. ASME Journal of Mechanisms and Robotics 5(4), 41017 (2013)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Sarah Bergbreiter
    • 1
  • Aaron P. Gerratt
    • 2
  • Dana Vogtmann
    • 1
  1. 1.University of MarylandCollege ParkUSA
  2. 2.École polytechnique fédérale de LausanneUSA

Personalised recommendations